Juegos de tipo Tug-of-War y soluciones viscosas

Autores
Blanc, Pablo
Año de publicación
2018
Idioma
inglés
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Rossi, Julio Daniel
Pinasco, Juan Pablo
Descripción
La motivación de esta tesis es el estudio de los juegos llamados Tug-of-War en la literatura, y su conexión con ecuaciones en derivadas parciales (EDP). Consideramos diferentes variantes de juegos de dos jugadores, con suma cero, que dependen de un parámetro que controla el tamaño del paso que se da cuando se actualiza la posición del juego. Se demuestra que el valor de estos juegos converge (cuando el parámetro tiende a cero) a una solución de una EDP (que debe ser interpretada en sentido viscoso). De esta forma nos encontramos con una nueva herramienta, basada en teorı́a de probabilidad, para obtener soluciones de problemas no-variacionales como por ejemplo (i) max{−∆_{p_1} u, −∆_{p_2} u} = 0, (ii) min{−∆_{p_1} u, −∆_{p_2} u} = 0, (iii) λ j (D^2 u) = 0. Aquı́ ∆_p u = div(|∇u|^{p−2} ∇u) es el operador conocido como p−laplaciano y λ j (D^2 u) es ej j−ésimo autovalor de D^2 u. También presentamos resultados relacionados con estos operadores que no están directamente conectados con los juegos que motivaron su estudio. Obtuvimos una interpretación geométrica de las soluciones viscosas de la ecuación λ j (D^2 u) = 0 en términos de envolventes cóncavo/convexas sobre espacios afines de dimensión j. Esta caracterización geométrica nos permitió dar condiciones necesarias y suficientes sobre el dominio para asegurar el buen planteo del problema de Dirichlet asociado a la ecuación. Motivados por las ecuaciones (i) y (ii) consideramos ecuaciones de la forma max {L_1 u, L_2 u} = 0. Presentamos un nuevo esquema iterativo usando el problema del obstáculo, que converge a una solución de esta ecuación. Finalmente, encontramos nuevas cotas para el primer autovalor de un operador elı́ptico totalmente no-lineal. Esta nueva cota inferior nos permite probar que lim λ_{1,p} = λ_{1,∞} =(π/2R)^2 p→∞ donde λ_{1,p} y λ_{1,∞} son el autovalor principal del p-laplaciano homogénero y del infinito laplaciano homogéneo respectivamente.
This thesis is motivated by the study of Tug-of-War games in connection with partial differential equations (PDE). We consider different variants of two-player zero-sum games that depend on a parameter that control the size of the step that actualizes the position of the game. We show that the value functions of these games converge (as the parameter goes to zero) to a solution of a PDE (that has to be interpreted in the viscosity sense). In this way we found a new tool, based in probability theory, to obtain solutions to non-variational problems like (i) max{−∆p1 u, −∆p2 u} = 0, (ii) min{−∆p1 u, −∆p2 u} = 0, (iii) λj (D2u) = 0. Here ∆pu = div(|∇u| p−2∇u) is the p−laplacian and λj (D2u) stands for the j−th eigenvalue of D2u. We also present results related to these operators that are not directly connected to the games that motivated their study. We obtained a geometric interpretation of the viscosity solutions to the equation λj (D2u) = 0 in terms of convex/concave envelopes over affine spaces of dimension j. This geometric interpretation of the solutions allows us to give necessary and sufficient conditions on the domain in order to guarantee the well posedness of the Dirichlet problem associated to this equation. Motivated by equations (i) and (ii) we were lead to consider equations of the form max {L1u, L2u} = 0. We present a new iterative scheme using the obstacle problem that converges to a solution of this equation. Finally, we also discuss new bounds for the first eigenvalue of fully nonlinear elliptic operators. These new bounds allow us to prove that lim lim λ_{1,p} = λ_{1,∞} =(π/2R)^2 p→∞ , where λ1,p and λ1,∞ are the principal eigenvalue for the homogeneous p-laplacian and the homogeneous infinity laplacian respectively.
Fil: Blanc, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
Ecuaciones en Derivadas Parciales
Probabilidad
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/80077

id CONICETDig_065bdad7cc7301aa4516e867698a45c7
oai_identifier_str oai:ri.conicet.gov.ar:11336/80077
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Juegos de tipo Tug-of-War y soluciones viscosasTug-of-War games and viscosity solutionsBlanc, PabloEcuaciones en Derivadas ParcialesProbabilidadhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1La motivación de esta tesis es el estudio de los juegos llamados Tug-of-War en la literatura, y su conexión con ecuaciones en derivadas parciales (EDP). Consideramos diferentes variantes de juegos de dos jugadores, con suma cero, que dependen de un parámetro que controla el tamaño del paso que se da cuando se actualiza la posición del juego. Se demuestra que el valor de estos juegos converge (cuando el parámetro tiende a cero) a una solución de una EDP (que debe ser interpretada en sentido viscoso). De esta forma nos encontramos con una nueva herramienta, basada en teorı́a de probabilidad, para obtener soluciones de problemas no-variacionales como por ejemplo (i) max{−∆_{p_1} u, −∆_{p_2} u} = 0, (ii) min{−∆_{p_1} u, −∆_{p_2} u} = 0, (iii) λ j (D^2 u) = 0. Aquı́ ∆_p u = div(|∇u|^{p−2} ∇u) es el operador conocido como p−laplaciano y λ j (D^2 u) es ej j−ésimo autovalor de D^2 u. También presentamos resultados relacionados con estos operadores que no están directamente conectados con los juegos que motivaron su estudio. Obtuvimos una interpretación geométrica de las soluciones viscosas de la ecuación λ j (D^2 u) = 0 en términos de envolventes cóncavo/convexas sobre espacios afines de dimensión j. Esta caracterización geométrica nos permitió dar condiciones necesarias y suficientes sobre el dominio para asegurar el buen planteo del problema de Dirichlet asociado a la ecuación. Motivados por las ecuaciones (i) y (ii) consideramos ecuaciones de la forma max {L_1 u, L_2 u} = 0. Presentamos un nuevo esquema iterativo usando el problema del obstáculo, que converge a una solución de esta ecuación. Finalmente, encontramos nuevas cotas para el primer autovalor de un operador elı́ptico totalmente no-lineal. Esta nueva cota inferior nos permite probar que lim λ_{1,p} = λ_{1,∞} =(π/2R)^2 p→∞ donde λ_{1,p} y λ_{1,∞} son el autovalor principal del p-laplaciano homogénero y del infinito laplaciano homogéneo respectivamente.This thesis is motivated by the study of Tug-of-War games in connection with partial differential equations (PDE). We consider different variants of two-player zero-sum games that depend on a parameter that control the size of the step that actualizes the position of the game. We show that the value functions of these games converge (as the parameter goes to zero) to a solution of a PDE (that has to be interpreted in the viscosity sense). In this way we found a new tool, based in probability theory, to obtain solutions to non-variational problems like (i) max{−∆p1 u, −∆p2 u} = 0, (ii) min{−∆p1 u, −∆p2 u} = 0, (iii) λj (D2u) = 0. Here ∆pu = div(|∇u| p−2∇u) is the p−laplacian and λj (D2u) stands for the j−th eigenvalue of D2u. We also present results related to these operators that are not directly connected to the games that motivated their study. We obtained a geometric interpretation of the viscosity solutions to the equation λj (D2u) = 0 in terms of convex/concave envelopes over affine spaces of dimension j. This geometric interpretation of the solutions allows us to give necessary and sufficient conditions on the domain in order to guarantee the well posedness of the Dirichlet problem associated to this equation. Motivated by equations (i) and (ii) we were lead to consider equations of the form max {L1u, L2u} = 0. We present a new iterative scheme using the obstacle problem that converges to a solution of this equation. Finally, we also discuss new bounds for the first eigenvalue of fully nonlinear elliptic operators. These new bounds allow us to prove that lim lim λ_{1,p} = λ_{1,∞} =(π/2R)^2 p→∞ , where λ1,p and λ1,∞ are the principal eigenvalue for the homogeneous p-laplacian and the homogeneous infinity laplacian respectively.Fil: Blanc, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaRossi, Julio DanielPinasco, Juan Pablo2018-10-30info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80077Blanc, Pablo; Rossi, Julio Daniel; Pinasco, Juan Pablo; Juegos de tipo Tug-of-War y soluciones viscosas; 30-10-2018CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://digital.bl.fcen.uba.ar/collection/tesis/document/tesis_n6561_Blancinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:58Zoai:ri.conicet.gov.ar:11336/80077instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:58.508CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Juegos de tipo Tug-of-War y soluciones viscosas
Tug-of-War games and viscosity solutions
title Juegos de tipo Tug-of-War y soluciones viscosas
spellingShingle Juegos de tipo Tug-of-War y soluciones viscosas
Blanc, Pablo
Ecuaciones en Derivadas Parciales
Probabilidad
title_short Juegos de tipo Tug-of-War y soluciones viscosas
title_full Juegos de tipo Tug-of-War y soluciones viscosas
title_fullStr Juegos de tipo Tug-of-War y soluciones viscosas
title_full_unstemmed Juegos de tipo Tug-of-War y soluciones viscosas
title_sort Juegos de tipo Tug-of-War y soluciones viscosas
dc.creator.none.fl_str_mv Blanc, Pablo
author Blanc, Pablo
author_facet Blanc, Pablo
author_role author
dc.contributor.none.fl_str_mv Rossi, Julio Daniel
Pinasco, Juan Pablo
dc.subject.none.fl_str_mv Ecuaciones en Derivadas Parciales
Probabilidad
topic Ecuaciones en Derivadas Parciales
Probabilidad
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv La motivación de esta tesis es el estudio de los juegos llamados Tug-of-War en la literatura, y su conexión con ecuaciones en derivadas parciales (EDP). Consideramos diferentes variantes de juegos de dos jugadores, con suma cero, que dependen de un parámetro que controla el tamaño del paso que se da cuando se actualiza la posición del juego. Se demuestra que el valor de estos juegos converge (cuando el parámetro tiende a cero) a una solución de una EDP (que debe ser interpretada en sentido viscoso). De esta forma nos encontramos con una nueva herramienta, basada en teorı́a de probabilidad, para obtener soluciones de problemas no-variacionales como por ejemplo (i) max{−∆_{p_1} u, −∆_{p_2} u} = 0, (ii) min{−∆_{p_1} u, −∆_{p_2} u} = 0, (iii) λ j (D^2 u) = 0. Aquı́ ∆_p u = div(|∇u|^{p−2} ∇u) es el operador conocido como p−laplaciano y λ j (D^2 u) es ej j−ésimo autovalor de D^2 u. También presentamos resultados relacionados con estos operadores que no están directamente conectados con los juegos que motivaron su estudio. Obtuvimos una interpretación geométrica de las soluciones viscosas de la ecuación λ j (D^2 u) = 0 en términos de envolventes cóncavo/convexas sobre espacios afines de dimensión j. Esta caracterización geométrica nos permitió dar condiciones necesarias y suficientes sobre el dominio para asegurar el buen planteo del problema de Dirichlet asociado a la ecuación. Motivados por las ecuaciones (i) y (ii) consideramos ecuaciones de la forma max {L_1 u, L_2 u} = 0. Presentamos un nuevo esquema iterativo usando el problema del obstáculo, que converge a una solución de esta ecuación. Finalmente, encontramos nuevas cotas para el primer autovalor de un operador elı́ptico totalmente no-lineal. Esta nueva cota inferior nos permite probar que lim λ_{1,p} = λ_{1,∞} =(π/2R)^2 p→∞ donde λ_{1,p} y λ_{1,∞} son el autovalor principal del p-laplaciano homogénero y del infinito laplaciano homogéneo respectivamente.
This thesis is motivated by the study of Tug-of-War games in connection with partial differential equations (PDE). We consider different variants of two-player zero-sum games that depend on a parameter that control the size of the step that actualizes the position of the game. We show that the value functions of these games converge (as the parameter goes to zero) to a solution of a PDE (that has to be interpreted in the viscosity sense). In this way we found a new tool, based in probability theory, to obtain solutions to non-variational problems like (i) max{−∆p1 u, −∆p2 u} = 0, (ii) min{−∆p1 u, −∆p2 u} = 0, (iii) λj (D2u) = 0. Here ∆pu = div(|∇u| p−2∇u) is the p−laplacian and λj (D2u) stands for the j−th eigenvalue of D2u. We also present results related to these operators that are not directly connected to the games that motivated their study. We obtained a geometric interpretation of the viscosity solutions to the equation λj (D2u) = 0 in terms of convex/concave envelopes over affine spaces of dimension j. This geometric interpretation of the solutions allows us to give necessary and sufficient conditions on the domain in order to guarantee the well posedness of the Dirichlet problem associated to this equation. Motivated by equations (i) and (ii) we were lead to consider equations of the form max {L1u, L2u} = 0. We present a new iterative scheme using the obstacle problem that converges to a solution of this equation. Finally, we also discuss new bounds for the first eigenvalue of fully nonlinear elliptic operators. These new bounds allow us to prove that lim lim λ_{1,p} = λ_{1,∞} =(π/2R)^2 p→∞ , where λ1,p and λ1,∞ are the principal eigenvalue for the homogeneous p-laplacian and the homogeneous infinity laplacian respectively.
Fil: Blanc, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description La motivación de esta tesis es el estudio de los juegos llamados Tug-of-War en la literatura, y su conexión con ecuaciones en derivadas parciales (EDP). Consideramos diferentes variantes de juegos de dos jugadores, con suma cero, que dependen de un parámetro que controla el tamaño del paso que se da cuando se actualiza la posición del juego. Se demuestra que el valor de estos juegos converge (cuando el parámetro tiende a cero) a una solución de una EDP (que debe ser interpretada en sentido viscoso). De esta forma nos encontramos con una nueva herramienta, basada en teorı́a de probabilidad, para obtener soluciones de problemas no-variacionales como por ejemplo (i) max{−∆_{p_1} u, −∆_{p_2} u} = 0, (ii) min{−∆_{p_1} u, −∆_{p_2} u} = 0, (iii) λ j (D^2 u) = 0. Aquı́ ∆_p u = div(|∇u|^{p−2} ∇u) es el operador conocido como p−laplaciano y λ j (D^2 u) es ej j−ésimo autovalor de D^2 u. También presentamos resultados relacionados con estos operadores que no están directamente conectados con los juegos que motivaron su estudio. Obtuvimos una interpretación geométrica de las soluciones viscosas de la ecuación λ j (D^2 u) = 0 en términos de envolventes cóncavo/convexas sobre espacios afines de dimensión j. Esta caracterización geométrica nos permitió dar condiciones necesarias y suficientes sobre el dominio para asegurar el buen planteo del problema de Dirichlet asociado a la ecuación. Motivados por las ecuaciones (i) y (ii) consideramos ecuaciones de la forma max {L_1 u, L_2 u} = 0. Presentamos un nuevo esquema iterativo usando el problema del obstáculo, que converge a una solución de esta ecuación. Finalmente, encontramos nuevas cotas para el primer autovalor de un operador elı́ptico totalmente no-lineal. Esta nueva cota inferior nos permite probar que lim λ_{1,p} = λ_{1,∞} =(π/2R)^2 p→∞ donde λ_{1,p} y λ_{1,∞} son el autovalor principal del p-laplaciano homogénero y del infinito laplaciano homogéneo respectivamente.
publishDate 2018
dc.date.none.fl_str_mv 2018-10-30
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/80077
Blanc, Pablo; Rossi, Julio Daniel; Pinasco, Juan Pablo; Juegos de tipo Tug-of-War y soluciones viscosas; 30-10-2018
CONICET Digital
CONICET
url http://hdl.handle.net/11336/80077
identifier_str_mv Blanc, Pablo; Rossi, Julio Daniel; Pinasco, Juan Pablo; Juegos de tipo Tug-of-War y soluciones viscosas; 30-10-2018
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://digital.bl.fcen.uba.ar/collection/tesis/document/tesis_n6561_Blanc
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270025629564928
score 13.13397