On the polynomial lindenstrauss theorem
- Autores
- Carando, D.; Lassalle, S.; Mazzitelli, M.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Under certain hypotheses on the Banach space X, we show that the set of N-homogeneous polynomials from X to any dual space, whose Aron-Berner extensions are norm attaining, is dense in the space of all continuous N-homogeneous polynomials. To this end we prove an integral formula for the duality between tensor products and polynomials. We also exhibit examples of Lorentz sequence spaces for which there is no polynomial Bishop-Phelps theorem, but our results apply. Finally we address quantitative versions, in the sense of Bollobás, of these results. © 2012 Elsevier Inc..
Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Funct. Anal. 2012;263(7):1809-1824
- Materia
-
Integral formula
Lindenstrauss type theorems
Norm attaining multilinear and polynomials mappings - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00221236_v263_n7_p1809_Carando
Ver los metadatos del registro completo
| id |
BDUBAFCEN_862d00854a75e1232861dcddac21f92b |
|---|---|
| oai_identifier_str |
paperaa:paper_00221236_v263_n7_p1809_Carando |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
On the polynomial lindenstrauss theoremCarando, D.Lassalle, S.Mazzitelli, M.Integral formulaLindenstrauss type theoremsNorm attaining multilinear and polynomials mappingsUnder certain hypotheses on the Banach space X, we show that the set of N-homogeneous polynomials from X to any dual space, whose Aron-Berner extensions are norm attaining, is dense in the space of all continuous N-homogeneous polynomials. To this end we prove an integral formula for the duality between tensor products and polynomials. We also exhibit examples of Lorentz sequence spaces for which there is no polynomial Bishop-Phelps theorem, but our results apply. Finally we address quantitative versions, in the sense of Bollobás, of these results. © 2012 Elsevier Inc..Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00221236_v263_n7_p1809_CarandoJ. Funct. Anal. 2012;263(7):1809-1824reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-23T11:18:15Zpaperaa:paper_00221236_v263_n7_p1809_CarandoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-23 11:18:16.794Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
On the polynomial lindenstrauss theorem |
| title |
On the polynomial lindenstrauss theorem |
| spellingShingle |
On the polynomial lindenstrauss theorem Carando, D. Integral formula Lindenstrauss type theorems Norm attaining multilinear and polynomials mappings |
| title_short |
On the polynomial lindenstrauss theorem |
| title_full |
On the polynomial lindenstrauss theorem |
| title_fullStr |
On the polynomial lindenstrauss theorem |
| title_full_unstemmed |
On the polynomial lindenstrauss theorem |
| title_sort |
On the polynomial lindenstrauss theorem |
| dc.creator.none.fl_str_mv |
Carando, D. Lassalle, S. Mazzitelli, M. |
| author |
Carando, D. |
| author_facet |
Carando, D. Lassalle, S. Mazzitelli, M. |
| author_role |
author |
| author2 |
Lassalle, S. Mazzitelli, M. |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Integral formula Lindenstrauss type theorems Norm attaining multilinear and polynomials mappings |
| topic |
Integral formula Lindenstrauss type theorems Norm attaining multilinear and polynomials mappings |
| dc.description.none.fl_txt_mv |
Under certain hypotheses on the Banach space X, we show that the set of N-homogeneous polynomials from X to any dual space, whose Aron-Berner extensions are norm attaining, is dense in the space of all continuous N-homogeneous polynomials. To this end we prove an integral formula for the duality between tensor products and polynomials. We also exhibit examples of Lorentz sequence spaces for which there is no polynomial Bishop-Phelps theorem, but our results apply. Finally we address quantitative versions, in the sense of Bollobás, of these results. © 2012 Elsevier Inc.. Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
Under certain hypotheses on the Banach space X, we show that the set of N-homogeneous polynomials from X to any dual space, whose Aron-Berner extensions are norm attaining, is dense in the space of all continuous N-homogeneous polynomials. To this end we prove an integral formula for the duality between tensor products and polynomials. We also exhibit examples of Lorentz sequence spaces for which there is no polynomial Bishop-Phelps theorem, but our results apply. Finally we address quantitative versions, in the sense of Bollobás, of these results. © 2012 Elsevier Inc.. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00221236_v263_n7_p1809_Carando |
| url |
http://hdl.handle.net/20.500.12110/paper_00221236_v263_n7_p1809_Carando |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
J. Funct. Anal. 2012;263(7):1809-1824 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1846784875844075520 |
| score |
12.982451 |