On the polynomial lindenstrauss theorem

Autores
Carando, D.; Lassalle, S.; Mazzitelli, M.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Under certain hypotheses on the Banach space X, we show that the set of N-homogeneous polynomials from X to any dual space, whose Aron-Berner extensions are norm attaining, is dense in the space of all continuous N-homogeneous polynomials. To this end we prove an integral formula for the duality between tensor products and polynomials. We also exhibit examples of Lorentz sequence spaces for which there is no polynomial Bishop-Phelps theorem, but our results apply. Finally we address quantitative versions, in the sense of Bollobás, of these results. © 2012 Elsevier Inc..
Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Funct. Anal. 2012;263(7):1809-1824
Materia
Integral formula
Lindenstrauss type theorems
Norm attaining multilinear and polynomials mappings
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00221236_v263_n7_p1809_Carando

id BDUBAFCEN_862d00854a75e1232861dcddac21f92b
oai_identifier_str paperaa:paper_00221236_v263_n7_p1809_Carando
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling On the polynomial lindenstrauss theoremCarando, D.Lassalle, S.Mazzitelli, M.Integral formulaLindenstrauss type theoremsNorm attaining multilinear and polynomials mappingsUnder certain hypotheses on the Banach space X, we show that the set of N-homogeneous polynomials from X to any dual space, whose Aron-Berner extensions are norm attaining, is dense in the space of all continuous N-homogeneous polynomials. To this end we prove an integral formula for the duality between tensor products and polynomials. We also exhibit examples of Lorentz sequence spaces for which there is no polynomial Bishop-Phelps theorem, but our results apply. Finally we address quantitative versions, in the sense of Bollobás, of these results. © 2012 Elsevier Inc..Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00221236_v263_n7_p1809_CarandoJ. Funct. Anal. 2012;263(7):1809-1824reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-23T11:18:15Zpaperaa:paper_00221236_v263_n7_p1809_CarandoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-23 11:18:16.794Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv On the polynomial lindenstrauss theorem
title On the polynomial lindenstrauss theorem
spellingShingle On the polynomial lindenstrauss theorem
Carando, D.
Integral formula
Lindenstrauss type theorems
Norm attaining multilinear and polynomials mappings
title_short On the polynomial lindenstrauss theorem
title_full On the polynomial lindenstrauss theorem
title_fullStr On the polynomial lindenstrauss theorem
title_full_unstemmed On the polynomial lindenstrauss theorem
title_sort On the polynomial lindenstrauss theorem
dc.creator.none.fl_str_mv Carando, D.
Lassalle, S.
Mazzitelli, M.
author Carando, D.
author_facet Carando, D.
Lassalle, S.
Mazzitelli, M.
author_role author
author2 Lassalle, S.
Mazzitelli, M.
author2_role author
author
dc.subject.none.fl_str_mv Integral formula
Lindenstrauss type theorems
Norm attaining multilinear and polynomials mappings
topic Integral formula
Lindenstrauss type theorems
Norm attaining multilinear and polynomials mappings
dc.description.none.fl_txt_mv Under certain hypotheses on the Banach space X, we show that the set of N-homogeneous polynomials from X to any dual space, whose Aron-Berner extensions are norm attaining, is dense in the space of all continuous N-homogeneous polynomials. To this end we prove an integral formula for the duality between tensor products and polynomials. We also exhibit examples of Lorentz sequence spaces for which there is no polynomial Bishop-Phelps theorem, but our results apply. Finally we address quantitative versions, in the sense of Bollobás, of these results. © 2012 Elsevier Inc..
Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description Under certain hypotheses on the Banach space X, we show that the set of N-homogeneous polynomials from X to any dual space, whose Aron-Berner extensions are norm attaining, is dense in the space of all continuous N-homogeneous polynomials. To this end we prove an integral formula for the duality between tensor products and polynomials. We also exhibit examples of Lorentz sequence spaces for which there is no polynomial Bishop-Phelps theorem, but our results apply. Finally we address quantitative versions, in the sense of Bollobás, of these results. © 2012 Elsevier Inc..
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00221236_v263_n7_p1809_Carando
url http://hdl.handle.net/20.500.12110/paper_00221236_v263_n7_p1809_Carando
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Funct. Anal. 2012;263(7):1809-1824
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1846784875844075520
score 12.982451