First report of Rice stripe necrosis virus infecting rice in Sierra Leone

Autores
Tucker, M. J.; Giovani Celli, Marcos Giovani; Conteh, A. B.; Taylor, D. R.; Hebrard, Andrés; Poulicard, N.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
While Rice stripe necrosis virus (RSNV, Benyvirus, Benyviridae) has been reported on rice plants on two continents, little is known about the diversity of this multipartite virus which is transmitted by the plasmodiophorid protist Polymyxa graminis. First identified in 1983 in the Côte d´Ivoire (Fauquet & Thouvenel, 1983), the disease had previously been observed in Sierra Leone without formal identification of the causal agent (Buddenhagen, pers. comm.). Later, the virus was reported in South and Central America (Colombia, Ecuador, Panama and Brazil) causing up to 40% yield losses (Morales et al., 1999). Recently, RSNV was identified for the first time in several African countries including Burkina Faso (Sérémé et al., 2014), Benin (Oludare et al., 2015) and Mali (Decroës et al., 2017) suggesting a re-emergence of the virus in Africa.In 2019, symptoms of leaf-crinkling and stripe necrosis were observed on a rice plant from the Bo District in Sierra Leone (Fig. 1). Leaf samples were analysed by serological and molecular methods to confirm the presence of RSNV in Sierra Leone. RSNV was detected by plate-trapped antibody (PTA)- ELISA using a polyclonal antiserum against RSNV (Fauquet & Thouvenel, 1983).The presence of the virus was confirmed after total RNA extraction using 0.05 g of leaves and the RNeasy Plant Mini Kit (Qiagen) and RT-PCR amplification (10 U/μl M-MLV-reverse transcriptase, Promega; 10 U/μl Dynazyme, Finnzyme) as described previously (Sérémé et al., 2014, Oludare et al., 2015) with primers RSNV1-2901F 5′-TGAATTTGGTGCTCTCTTG-3′ / RSNV1-3827R 5′-TGTGGCGTTTCCAGACCTAAA-3´ and RSNV2-5´ 5´-TATCACTACTGACGAATTCCACCTAC-3´ / RSNV2-1223R 5´-AATCTGCGGCCTGTTTTGTA-3´. Specific amplicons, 926 and 1241 nt in length, were generated corresponding to sequences in the helicase domain and the coat protein (CP) genes on RSNV RNA 1 and RNA 2, respectively. The amplicons were sequenced directly and the sequences deposited in GenBank (Accession Nos. MN750254 and MN750255, respectively).The helicase sequence obtained from the Sierra Leone RSNV isolate showed 1.8-7.3% genetic distance with those from South America (EU099844.3, MG792544, MG792545, MG792546) and only 1.4-2.2% with those from Africa (KP099623, MF115599, MF115600, MF115601, MF115602, MF115603, MK170452, MK170453). The phylogenetic analysis based on the helicase domain included the sequence obtained from the Sierra Leone within a cluster represented by RSNV from South America and West Africa (Fig. 2a). In contrast, the CP sequence from the Sierra Leone RSNV isolate revealed an unexpected genetic differentiation as compared to all the other sequences from South America (5.6%; NC_038774) or Africa (5.2-6.5%; LK023710, MF115604, MF115605, MF115606, MF115607, MF115608, MK170454, MK170455). Interestingly, the CP sequence from Sierra Leone is located at a basal position in the phylogeny (Fig. 2b).To our knowledge, this is the first confirmed report of RSNV in Sierra Leone. Further studies are needed to assess the molecular and biological diversity of RSNV, the spatial distribution and the incidence of this re-emerging rice disease in Africa.
Fil: Tucker, M. J.. Sierra Leone Agricultural Research Institute; Sierra Leona
Fil: Giovani Celli, Marcos Giovani. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina
Fil: Conteh, A. B.. Sierra Leone Agricultural Research Institute; Sierra Leona
Fil: Taylor, D. R.. Sierra Leone Agricultural Research Institute; Sierra Leona
Fil: Hebrard, Andrés. Centre National de la Recherche Scientifique. Institut de Recherche pour le Développement; Francia
Fil: Poulicard, N.. Centre National de la Recherche Scientifique. Institut de Recherche pour le Développement; Francia
Materia
BENYVIRUS
ARROZ
RSNV
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/135333

id CONICETDig_061794a8f7bcf7a4633c3fb5b7c4252e
oai_identifier_str oai:ri.conicet.gov.ar:11336/135333
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling First report of Rice stripe necrosis virus infecting rice in Sierra LeoneTucker, M. J.Giovani Celli, Marcos GiovaniConteh, A. B.Taylor, D. R.Hebrard, AndrésPoulicard, N.BENYVIRUSARROZRSNVhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4While Rice stripe necrosis virus (RSNV, Benyvirus, Benyviridae) has been reported on rice plants on two continents, little is known about the diversity of this multipartite virus which is transmitted by the plasmodiophorid protist Polymyxa graminis. First identified in 1983 in the Côte d´Ivoire (Fauquet & Thouvenel, 1983), the disease had previously been observed in Sierra Leone without formal identification of the causal agent (Buddenhagen, pers. comm.). Later, the virus was reported in South and Central America (Colombia, Ecuador, Panama and Brazil) causing up to 40% yield losses (Morales et al., 1999). Recently, RSNV was identified for the first time in several African countries including Burkina Faso (Sérémé et al., 2014), Benin (Oludare et al., 2015) and Mali (Decroës et al., 2017) suggesting a re-emergence of the virus in Africa.In 2019, symptoms of leaf-crinkling and stripe necrosis were observed on a rice plant from the Bo District in Sierra Leone (Fig. 1). Leaf samples were analysed by serological and molecular methods to confirm the presence of RSNV in Sierra Leone. RSNV was detected by plate-trapped antibody (PTA)- ELISA using a polyclonal antiserum against RSNV (Fauquet & Thouvenel, 1983).The presence of the virus was confirmed after total RNA extraction using 0.05 g of leaves and the RNeasy Plant Mini Kit (Qiagen) and RT-PCR amplification (10 U/μl M-MLV-reverse transcriptase, Promega; 10 U/μl Dynazyme, Finnzyme) as described previously (Sérémé et al., 2014, Oludare et al., 2015) with primers RSNV1-2901F 5′-TGAATTTGGTGCTCTCTTG-3′ / RSNV1-3827R 5′-TGTGGCGTTTCCAGACCTAAA-3´ and RSNV2-5´ 5´-TATCACTACTGACGAATTCCACCTAC-3´ / RSNV2-1223R 5´-AATCTGCGGCCTGTTTTGTA-3´. Specific amplicons, 926 and 1241 nt in length, were generated corresponding to sequences in the helicase domain and the coat protein (CP) genes on RSNV RNA 1 and RNA 2, respectively. The amplicons were sequenced directly and the sequences deposited in GenBank (Accession Nos. MN750254 and MN750255, respectively).The helicase sequence obtained from the Sierra Leone RSNV isolate showed 1.8-7.3% genetic distance with those from South America (EU099844.3, MG792544, MG792545, MG792546) and only 1.4-2.2% with those from Africa (KP099623, MF115599, MF115600, MF115601, MF115602, MF115603, MK170452, MK170453). The phylogenetic analysis based on the helicase domain included the sequence obtained from the Sierra Leone within a cluster represented by RSNV from South America and West Africa (Fig. 2a). In contrast, the CP sequence from the Sierra Leone RSNV isolate revealed an unexpected genetic differentiation as compared to all the other sequences from South America (5.6%; NC_038774) or Africa (5.2-6.5%; LK023710, MF115604, MF115605, MF115606, MF115607, MF115608, MK170454, MK170455). Interestingly, the CP sequence from Sierra Leone is located at a basal position in the phylogeny (Fig. 2b).To our knowledge, this is the first confirmed report of RSNV in Sierra Leone. Further studies are needed to assess the molecular and biological diversity of RSNV, the spatial distribution and the incidence of this re-emerging rice disease in Africa.Fil: Tucker, M. J.. Sierra Leone Agricultural Research Institute; Sierra LeonaFil: Giovani Celli, Marcos Giovani. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; ArgentinaFil: Conteh, A. B.. Sierra Leone Agricultural Research Institute; Sierra LeonaFil: Taylor, D. R.. Sierra Leone Agricultural Research Institute; Sierra LeonaFil: Hebrard, Andrés. Centre National de la Recherche Scientifique. Institut de Recherche pour le Développement; FranciaFil: Poulicard, N.. Centre National de la Recherche Scientifique. Institut de Recherche pour le Développement; FranciaJohn Wiley and Sons Inc2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/135333Tucker, M. J.; Giovani Celli, Marcos Giovani; Conteh, A. B.; Taylor, D. R.; Hebrard, Andrés; et al.; First report of Rice stripe necrosis virus infecting rice in Sierra Leone; John Wiley and Sons Inc; New Disease Reports; 41; 1; 1-2020; 10-102044-0588CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5197/j.2044-0588.2020.041.010info:eu-repo/semantics/altIdentifier/url/https://bsppjournals.onlinelibrary.wiley.com/doi/10.5197/j.2044-0588.2020.041.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:25:37Zoai:ri.conicet.gov.ar:11336/135333instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:25:37.837CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv First report of Rice stripe necrosis virus infecting rice in Sierra Leone
title First report of Rice stripe necrosis virus infecting rice in Sierra Leone
spellingShingle First report of Rice stripe necrosis virus infecting rice in Sierra Leone
Tucker, M. J.
BENYVIRUS
ARROZ
RSNV
title_short First report of Rice stripe necrosis virus infecting rice in Sierra Leone
title_full First report of Rice stripe necrosis virus infecting rice in Sierra Leone
title_fullStr First report of Rice stripe necrosis virus infecting rice in Sierra Leone
title_full_unstemmed First report of Rice stripe necrosis virus infecting rice in Sierra Leone
title_sort First report of Rice stripe necrosis virus infecting rice in Sierra Leone
dc.creator.none.fl_str_mv Tucker, M. J.
Giovani Celli, Marcos Giovani
Conteh, A. B.
Taylor, D. R.
Hebrard, Andrés
Poulicard, N.
author Tucker, M. J.
author_facet Tucker, M. J.
Giovani Celli, Marcos Giovani
Conteh, A. B.
Taylor, D. R.
Hebrard, Andrés
Poulicard, N.
author_role author
author2 Giovani Celli, Marcos Giovani
Conteh, A. B.
Taylor, D. R.
Hebrard, Andrés
Poulicard, N.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv BENYVIRUS
ARROZ
RSNV
topic BENYVIRUS
ARROZ
RSNV
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.1
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv While Rice stripe necrosis virus (RSNV, Benyvirus, Benyviridae) has been reported on rice plants on two continents, little is known about the diversity of this multipartite virus which is transmitted by the plasmodiophorid protist Polymyxa graminis. First identified in 1983 in the Côte d´Ivoire (Fauquet & Thouvenel, 1983), the disease had previously been observed in Sierra Leone without formal identification of the causal agent (Buddenhagen, pers. comm.). Later, the virus was reported in South and Central America (Colombia, Ecuador, Panama and Brazil) causing up to 40% yield losses (Morales et al., 1999). Recently, RSNV was identified for the first time in several African countries including Burkina Faso (Sérémé et al., 2014), Benin (Oludare et al., 2015) and Mali (Decroës et al., 2017) suggesting a re-emergence of the virus in Africa.In 2019, symptoms of leaf-crinkling and stripe necrosis were observed on a rice plant from the Bo District in Sierra Leone (Fig. 1). Leaf samples were analysed by serological and molecular methods to confirm the presence of RSNV in Sierra Leone. RSNV was detected by plate-trapped antibody (PTA)- ELISA using a polyclonal antiserum against RSNV (Fauquet & Thouvenel, 1983).The presence of the virus was confirmed after total RNA extraction using 0.05 g of leaves and the RNeasy Plant Mini Kit (Qiagen) and RT-PCR amplification (10 U/μl M-MLV-reverse transcriptase, Promega; 10 U/μl Dynazyme, Finnzyme) as described previously (Sérémé et al., 2014, Oludare et al., 2015) with primers RSNV1-2901F 5′-TGAATTTGGTGCTCTCTTG-3′ / RSNV1-3827R 5′-TGTGGCGTTTCCAGACCTAAA-3´ and RSNV2-5´ 5´-TATCACTACTGACGAATTCCACCTAC-3´ / RSNV2-1223R 5´-AATCTGCGGCCTGTTTTGTA-3´. Specific amplicons, 926 and 1241 nt in length, were generated corresponding to sequences in the helicase domain and the coat protein (CP) genes on RSNV RNA 1 and RNA 2, respectively. The amplicons were sequenced directly and the sequences deposited in GenBank (Accession Nos. MN750254 and MN750255, respectively).The helicase sequence obtained from the Sierra Leone RSNV isolate showed 1.8-7.3% genetic distance with those from South America (EU099844.3, MG792544, MG792545, MG792546) and only 1.4-2.2% with those from Africa (KP099623, MF115599, MF115600, MF115601, MF115602, MF115603, MK170452, MK170453). The phylogenetic analysis based on the helicase domain included the sequence obtained from the Sierra Leone within a cluster represented by RSNV from South America and West Africa (Fig. 2a). In contrast, the CP sequence from the Sierra Leone RSNV isolate revealed an unexpected genetic differentiation as compared to all the other sequences from South America (5.6%; NC_038774) or Africa (5.2-6.5%; LK023710, MF115604, MF115605, MF115606, MF115607, MF115608, MK170454, MK170455). Interestingly, the CP sequence from Sierra Leone is located at a basal position in the phylogeny (Fig. 2b).To our knowledge, this is the first confirmed report of RSNV in Sierra Leone. Further studies are needed to assess the molecular and biological diversity of RSNV, the spatial distribution and the incidence of this re-emerging rice disease in Africa.
Fil: Tucker, M. J.. Sierra Leone Agricultural Research Institute; Sierra Leona
Fil: Giovani Celli, Marcos Giovani. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina
Fil: Conteh, A. B.. Sierra Leone Agricultural Research Institute; Sierra Leona
Fil: Taylor, D. R.. Sierra Leone Agricultural Research Institute; Sierra Leona
Fil: Hebrard, Andrés. Centre National de la Recherche Scientifique. Institut de Recherche pour le Développement; Francia
Fil: Poulicard, N.. Centre National de la Recherche Scientifique. Institut de Recherche pour le Développement; Francia
description While Rice stripe necrosis virus (RSNV, Benyvirus, Benyviridae) has been reported on rice plants on two continents, little is known about the diversity of this multipartite virus which is transmitted by the plasmodiophorid protist Polymyxa graminis. First identified in 1983 in the Côte d´Ivoire (Fauquet & Thouvenel, 1983), the disease had previously been observed in Sierra Leone without formal identification of the causal agent (Buddenhagen, pers. comm.). Later, the virus was reported in South and Central America (Colombia, Ecuador, Panama and Brazil) causing up to 40% yield losses (Morales et al., 1999). Recently, RSNV was identified for the first time in several African countries including Burkina Faso (Sérémé et al., 2014), Benin (Oludare et al., 2015) and Mali (Decroës et al., 2017) suggesting a re-emergence of the virus in Africa.In 2019, symptoms of leaf-crinkling and stripe necrosis were observed on a rice plant from the Bo District in Sierra Leone (Fig. 1). Leaf samples were analysed by serological and molecular methods to confirm the presence of RSNV in Sierra Leone. RSNV was detected by plate-trapped antibody (PTA)- ELISA using a polyclonal antiserum against RSNV (Fauquet & Thouvenel, 1983).The presence of the virus was confirmed after total RNA extraction using 0.05 g of leaves and the RNeasy Plant Mini Kit (Qiagen) and RT-PCR amplification (10 U/μl M-MLV-reverse transcriptase, Promega; 10 U/μl Dynazyme, Finnzyme) as described previously (Sérémé et al., 2014, Oludare et al., 2015) with primers RSNV1-2901F 5′-TGAATTTGGTGCTCTCTTG-3′ / RSNV1-3827R 5′-TGTGGCGTTTCCAGACCTAAA-3´ and RSNV2-5´ 5´-TATCACTACTGACGAATTCCACCTAC-3´ / RSNV2-1223R 5´-AATCTGCGGCCTGTTTTGTA-3´. Specific amplicons, 926 and 1241 nt in length, were generated corresponding to sequences in the helicase domain and the coat protein (CP) genes on RSNV RNA 1 and RNA 2, respectively. The amplicons were sequenced directly and the sequences deposited in GenBank (Accession Nos. MN750254 and MN750255, respectively).The helicase sequence obtained from the Sierra Leone RSNV isolate showed 1.8-7.3% genetic distance with those from South America (EU099844.3, MG792544, MG792545, MG792546) and only 1.4-2.2% with those from Africa (KP099623, MF115599, MF115600, MF115601, MF115602, MF115603, MK170452, MK170453). The phylogenetic analysis based on the helicase domain included the sequence obtained from the Sierra Leone within a cluster represented by RSNV from South America and West Africa (Fig. 2a). In contrast, the CP sequence from the Sierra Leone RSNV isolate revealed an unexpected genetic differentiation as compared to all the other sequences from South America (5.6%; NC_038774) or Africa (5.2-6.5%; LK023710, MF115604, MF115605, MF115606, MF115607, MF115608, MK170454, MK170455). Interestingly, the CP sequence from Sierra Leone is located at a basal position in the phylogeny (Fig. 2b).To our knowledge, this is the first confirmed report of RSNV in Sierra Leone. Further studies are needed to assess the molecular and biological diversity of RSNV, the spatial distribution and the incidence of this re-emerging rice disease in Africa.
publishDate 2020
dc.date.none.fl_str_mv 2020-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/135333
Tucker, M. J.; Giovani Celli, Marcos Giovani; Conteh, A. B.; Taylor, D. R.; Hebrard, Andrés; et al.; First report of Rice stripe necrosis virus infecting rice in Sierra Leone; John Wiley and Sons Inc; New Disease Reports; 41; 1; 1-2020; 10-10
2044-0588
CONICET Digital
CONICET
url http://hdl.handle.net/11336/135333
identifier_str_mv Tucker, M. J.; Giovani Celli, Marcos Giovani; Conteh, A. B.; Taylor, D. R.; Hebrard, Andrés; et al.; First report of Rice stripe necrosis virus infecting rice in Sierra Leone; John Wiley and Sons Inc; New Disease Reports; 41; 1; 1-2020; 10-10
2044-0588
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.5197/j.2044-0588.2020.041.010
info:eu-repo/semantics/altIdentifier/url/https://bsppjournals.onlinelibrary.wiley.com/doi/10.5197/j.2044-0588.2020.041.010
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley and Sons Inc
publisher.none.fl_str_mv John Wiley and Sons Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082693100470272
score 13.22299