Characterising the glass transition temperature-structure relationship through a recurrent neural network

Autores
Borredon, Claudia; Miccio, Luis Alejandro; Cerveny, Silvina; Schwartz, Gustavo A.
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Quantitative structure-property relationship (QSPR) is a powerful analytical method to find correlations between the structure of a molecule and its physicochemical properties. The glass transition temperature (Tg) is one of the most reported properties, and its characterisation is critical for tuning the physical properties of materials. In this work, we explore the use of machine learning in the field of QSPR by developing a recurrent neural network (RNN) that relates the chemical structure and the glass transition temperature of molecular glass formers. In addition, we performed a chemical embedding from the last hidden layer of the RNN architecture into an m-dimensional Tg-oriented space. Then, we test the model to predict the glass transition temperature of essential amino acids and peptides. The results are very promising and they can open the door for exploring and designing new materials.
Fil: Borredon, Claudia. No especifíca;
Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Cerveny, Silvina. No especifíca;
Fil: Schwartz, Gustavo A.. No especifíca;
Materia
Glass Transition temperature
Machine learning
Recurrent neural network
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/251445

id CONICETDig_3ab7601339102f40c47dde3d12235cf7
oai_identifier_str oai:ri.conicet.gov.ar:11336/251445
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Characterising the glass transition temperature-structure relationship through a recurrent neural networkBorredon, ClaudiaMiccio, Luis AlejandroCerveny, SilvinaSchwartz, Gustavo A.Glass Transition temperatureMachine learningRecurrent neural networkhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Quantitative structure-property relationship (QSPR) is a powerful analytical method to find correlations between the structure of a molecule and its physicochemical properties. The glass transition temperature (Tg) is one of the most reported properties, and its characterisation is critical for tuning the physical properties of materials. In this work, we explore the use of machine learning in the field of QSPR by developing a recurrent neural network (RNN) that relates the chemical structure and the glass transition temperature of molecular glass formers. In addition, we performed a chemical embedding from the last hidden layer of the RNN architecture into an m-dimensional Tg-oriented space. Then, we test the model to predict the glass transition temperature of essential amino acids and peptides. The results are very promising and they can open the door for exploring and designing new materials.Fil: Borredon, Claudia. No especifíca;Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Cerveny, Silvina. No especifíca;Fil: Schwartz, Gustavo A.. No especifíca;Elsevier Science2023-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/251445Borredon, Claudia; Miccio, Luis Alejandro; Cerveny, Silvina; Schwartz, Gustavo A.; Characterising the glass transition temperature-structure relationship through a recurrent neural network; Elsevier Science; Journal of Non-Crystalline Solids: X; 18; 6-2023; 1-82590-1591CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2590159123000377info:eu-repo/semantics/altIdentifier/doi/10.1016/j.nocx.2023.100185info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:48:22Zoai:ri.conicet.gov.ar:11336/251445instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:48:22.776CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Characterising the glass transition temperature-structure relationship through a recurrent neural network
title Characterising the glass transition temperature-structure relationship through a recurrent neural network
spellingShingle Characterising the glass transition temperature-structure relationship through a recurrent neural network
Borredon, Claudia
Glass Transition temperature
Machine learning
Recurrent neural network
title_short Characterising the glass transition temperature-structure relationship through a recurrent neural network
title_full Characterising the glass transition temperature-structure relationship through a recurrent neural network
title_fullStr Characterising the glass transition temperature-structure relationship through a recurrent neural network
title_full_unstemmed Characterising the glass transition temperature-structure relationship through a recurrent neural network
title_sort Characterising the glass transition temperature-structure relationship through a recurrent neural network
dc.creator.none.fl_str_mv Borredon, Claudia
Miccio, Luis Alejandro
Cerveny, Silvina
Schwartz, Gustavo A.
author Borredon, Claudia
author_facet Borredon, Claudia
Miccio, Luis Alejandro
Cerveny, Silvina
Schwartz, Gustavo A.
author_role author
author2 Miccio, Luis Alejandro
Cerveny, Silvina
Schwartz, Gustavo A.
author2_role author
author
author
dc.subject.none.fl_str_mv Glass Transition temperature
Machine learning
Recurrent neural network
topic Glass Transition temperature
Machine learning
Recurrent neural network
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Quantitative structure-property relationship (QSPR) is a powerful analytical method to find correlations between the structure of a molecule and its physicochemical properties. The glass transition temperature (Tg) is one of the most reported properties, and its characterisation is critical for tuning the physical properties of materials. In this work, we explore the use of machine learning in the field of QSPR by developing a recurrent neural network (RNN) that relates the chemical structure and the glass transition temperature of molecular glass formers. In addition, we performed a chemical embedding from the last hidden layer of the RNN architecture into an m-dimensional Tg-oriented space. Then, we test the model to predict the glass transition temperature of essential amino acids and peptides. The results are very promising and they can open the door for exploring and designing new materials.
Fil: Borredon, Claudia. No especifíca;
Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Cerveny, Silvina. No especifíca;
Fil: Schwartz, Gustavo A.. No especifíca;
description Quantitative structure-property relationship (QSPR) is a powerful analytical method to find correlations between the structure of a molecule and its physicochemical properties. The glass transition temperature (Tg) is one of the most reported properties, and its characterisation is critical for tuning the physical properties of materials. In this work, we explore the use of machine learning in the field of QSPR by developing a recurrent neural network (RNN) that relates the chemical structure and the glass transition temperature of molecular glass formers. In addition, we performed a chemical embedding from the last hidden layer of the RNN architecture into an m-dimensional Tg-oriented space. Then, we test the model to predict the glass transition temperature of essential amino acids and peptides. The results are very promising and they can open the door for exploring and designing new materials.
publishDate 2023
dc.date.none.fl_str_mv 2023-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/251445
Borredon, Claudia; Miccio, Luis Alejandro; Cerveny, Silvina; Schwartz, Gustavo A.; Characterising the glass transition temperature-structure relationship through a recurrent neural network; Elsevier Science; Journal of Non-Crystalline Solids: X; 18; 6-2023; 1-8
2590-1591
CONICET Digital
CONICET
url http://hdl.handle.net/11336/251445
identifier_str_mv Borredon, Claudia; Miccio, Luis Alejandro; Cerveny, Silvina; Schwartz, Gustavo A.; Characterising the glass transition temperature-structure relationship through a recurrent neural network; Elsevier Science; Journal of Non-Crystalline Solids: X; 18; 6-2023; 1-8
2590-1591
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2590159123000377
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.nocx.2023.100185
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083003858550784
score 13.22299