Characterising the glass transition temperature-structure relationship through a recurrent neural network
- Autores
- Borredon, Claudia; Miccio, Luis Alejandro; Cerveny, Silvina; Schwartz, Gustavo A.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Quantitative structure-property relationship (QSPR) is a powerful analytical method to find correlations between the structure of a molecule and its physicochemical properties. The glass transition temperature (Tg) is one of the most reported properties, and its characterisation is critical for tuning the physical properties of materials. In this work, we explore the use of machine learning in the field of QSPR by developing a recurrent neural network (RNN) that relates the chemical structure and the glass transition temperature of molecular glass formers. In addition, we performed a chemical embedding from the last hidden layer of the RNN architecture into an m-dimensional Tg-oriented space. Then, we test the model to predict the glass transition temperature of essential amino acids and peptides. The results are very promising and they can open the door for exploring and designing new materials.
Fil: Borredon, Claudia. No especifíca;
Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Cerveny, Silvina. No especifíca;
Fil: Schwartz, Gustavo A.. No especifíca; - Materia
-
Glass Transition temperature
Machine learning
Recurrent neural network - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/251445
Ver los metadatos del registro completo
id |
CONICETDig_3ab7601339102f40c47dde3d12235cf7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/251445 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Characterising the glass transition temperature-structure relationship through a recurrent neural networkBorredon, ClaudiaMiccio, Luis AlejandroCerveny, SilvinaSchwartz, Gustavo A.Glass Transition temperatureMachine learningRecurrent neural networkhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Quantitative structure-property relationship (QSPR) is a powerful analytical method to find correlations between the structure of a molecule and its physicochemical properties. The glass transition temperature (Tg) is one of the most reported properties, and its characterisation is critical for tuning the physical properties of materials. In this work, we explore the use of machine learning in the field of QSPR by developing a recurrent neural network (RNN) that relates the chemical structure and the glass transition temperature of molecular glass formers. In addition, we performed a chemical embedding from the last hidden layer of the RNN architecture into an m-dimensional Tg-oriented space. Then, we test the model to predict the glass transition temperature of essential amino acids and peptides. The results are very promising and they can open the door for exploring and designing new materials.Fil: Borredon, Claudia. No especifíca;Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Cerveny, Silvina. No especifíca;Fil: Schwartz, Gustavo A.. No especifíca;Elsevier Science2023-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/251445Borredon, Claudia; Miccio, Luis Alejandro; Cerveny, Silvina; Schwartz, Gustavo A.; Characterising the glass transition temperature-structure relationship through a recurrent neural network; Elsevier Science; Journal of Non-Crystalline Solids: X; 18; 6-2023; 1-82590-1591CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2590159123000377info:eu-repo/semantics/altIdentifier/doi/10.1016/j.nocx.2023.100185info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:48:22Zoai:ri.conicet.gov.ar:11336/251445instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:48:22.776CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Characterising the glass transition temperature-structure relationship through a recurrent neural network |
title |
Characterising the glass transition temperature-structure relationship through a recurrent neural network |
spellingShingle |
Characterising the glass transition temperature-structure relationship through a recurrent neural network Borredon, Claudia Glass Transition temperature Machine learning Recurrent neural network |
title_short |
Characterising the glass transition temperature-structure relationship through a recurrent neural network |
title_full |
Characterising the glass transition temperature-structure relationship through a recurrent neural network |
title_fullStr |
Characterising the glass transition temperature-structure relationship through a recurrent neural network |
title_full_unstemmed |
Characterising the glass transition temperature-structure relationship through a recurrent neural network |
title_sort |
Characterising the glass transition temperature-structure relationship through a recurrent neural network |
dc.creator.none.fl_str_mv |
Borredon, Claudia Miccio, Luis Alejandro Cerveny, Silvina Schwartz, Gustavo A. |
author |
Borredon, Claudia |
author_facet |
Borredon, Claudia Miccio, Luis Alejandro Cerveny, Silvina Schwartz, Gustavo A. |
author_role |
author |
author2 |
Miccio, Luis Alejandro Cerveny, Silvina Schwartz, Gustavo A. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Glass Transition temperature Machine learning Recurrent neural network |
topic |
Glass Transition temperature Machine learning Recurrent neural network |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Quantitative structure-property relationship (QSPR) is a powerful analytical method to find correlations between the structure of a molecule and its physicochemical properties. The glass transition temperature (Tg) is one of the most reported properties, and its characterisation is critical for tuning the physical properties of materials. In this work, we explore the use of machine learning in the field of QSPR by developing a recurrent neural network (RNN) that relates the chemical structure and the glass transition temperature of molecular glass formers. In addition, we performed a chemical embedding from the last hidden layer of the RNN architecture into an m-dimensional Tg-oriented space. Then, we test the model to predict the glass transition temperature of essential amino acids and peptides. The results are very promising and they can open the door for exploring and designing new materials. Fil: Borredon, Claudia. No especifíca; Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Cerveny, Silvina. No especifíca; Fil: Schwartz, Gustavo A.. No especifíca; |
description |
Quantitative structure-property relationship (QSPR) is a powerful analytical method to find correlations between the structure of a molecule and its physicochemical properties. The glass transition temperature (Tg) is one of the most reported properties, and its characterisation is critical for tuning the physical properties of materials. In this work, we explore the use of machine learning in the field of QSPR by developing a recurrent neural network (RNN) that relates the chemical structure and the glass transition temperature of molecular glass formers. In addition, we performed a chemical embedding from the last hidden layer of the RNN architecture into an m-dimensional Tg-oriented space. Then, we test the model to predict the glass transition temperature of essential amino acids and peptides. The results are very promising and they can open the door for exploring and designing new materials. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/251445 Borredon, Claudia; Miccio, Luis Alejandro; Cerveny, Silvina; Schwartz, Gustavo A.; Characterising the glass transition temperature-structure relationship through a recurrent neural network; Elsevier Science; Journal of Non-Crystalline Solids: X; 18; 6-2023; 1-8 2590-1591 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/251445 |
identifier_str_mv |
Borredon, Claudia; Miccio, Luis Alejandro; Cerveny, Silvina; Schwartz, Gustavo A.; Characterising the glass transition temperature-structure relationship through a recurrent neural network; Elsevier Science; Journal of Non-Crystalline Solids: X; 18; 6-2023; 1-8 2590-1591 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2590159123000377 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.nocx.2023.100185 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083003858550784 |
score |
13.22299 |