Forecasting virus outbreaks with social media data via neural ordinary differential equations
- Autores
- Núñez, Matías; Barreiro, Nadia L.; Barrio, Rafael A.; Rackauckas, Christopher
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión aceptada
- Descripción
- In the midst of the covid-19 pandemic, social media data collected in real time has the potential of being an early indicator of a new epidemic wave. This possibility is explored here by using a neural ordinary differential equation (neural ODE) that is trained to predict virus outbreaks for a geographic region. It learns from multivariate time series of signals obtained from a novel set of massive online surveys about COVID-19 symptoms. Once trained, the neural ODE is able to capture the dynamics of the interlinked local signals and accurately predict the number of new infections up to two months in advance. Moreover, it can estimate the future effects of changes in the number of infected at a given time, which can be associated with the flow of people entering or leaving a given region or, for instance, with a local vaccination campaign. This work gives compelling preliminary evidence for the predictive power of widely distributed social media surveys for public health application
Fil: Núñez, Matías. Universidad Nacional del Comahue. INIBIOMA. CNEA. CONICET; Argentina. - Fuente
- MedRxiv the preprint server for health sciences
- Materia
-
Redes sociales
Datos recopilados
Ecuación diferencial ordinaria neural
Brotes de virus
COVID-19
Ciencias Biomédicas - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional del Comahue
- OAI Identificador
- oai:rdi.uncoma.edu.ar:uncomaid/16169
Ver los metadatos del registro completo
id |
RDIUNCO_90306c4d2f0030d86fc9fbdc02cdd556 |
---|---|
oai_identifier_str |
oai:rdi.uncoma.edu.ar:uncomaid/16169 |
network_acronym_str |
RDIUNCO |
repository_id_str |
7108 |
network_name_str |
Repositorio Digital Institucional (UNCo) |
spelling |
Forecasting virus outbreaks with social media data via neural ordinary differential equationsNúñez, MatíasBarreiro, Nadia L.Barrio, Rafael A.Rackauckas, ChristopherRedes socialesDatos recopiladosEcuación diferencial ordinaria neuralBrotes de virusCOVID-19Ciencias BiomédicasIn the midst of the covid-19 pandemic, social media data collected in real time has the potential of being an early indicator of a new epidemic wave. This possibility is explored here by using a neural ordinary differential equation (neural ODE) that is trained to predict virus outbreaks for a geographic region. It learns from multivariate time series of signals obtained from a novel set of massive online surveys about COVID-19 symptoms. Once trained, the neural ODE is able to capture the dynamics of the interlinked local signals and accurately predict the number of new infections up to two months in advance. Moreover, it can estimate the future effects of changes in the number of infected at a given time, which can be associated with the flow of people entering or leaving a given region or, for instance, with a local vaccination campaign. This work gives compelling preliminary evidence for the predictive power of widely distributed social media surveys for public health applicationFil: Núñez, Matías. Universidad Nacional del Comahue. INIBIOMA. CNEA. CONICET; Argentina.medRxivCold Spring Harbor LaboratoryUniversidad de YaleBMJ2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://rdi.uncoma.edu.ar/handle/uncomaid/16169MedRxiv the preprint server for health sciencesreponame:Repositorio Digital Institucional (UNCo)instname:Universidad Nacional del Comahueenghttps://www.medrxiv.org/content/10.1101/2021.01.27.21250642v1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/2025-09-29T14:29:05Zoai:rdi.uncoma.edu.ar:uncomaid/16169instacron:UNCoInstitucionalhttp://rdi.uncoma.edu.ar/Universidad públicaNo correspondehttp://rdi.uncoma.edu.ar/oaimirtha.mateo@biblioteca.uncoma.edu.ar; adriana.acuna@biblioteca.uncoma.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:71082025-09-29 14:29:05.787Repositorio Digital Institucional (UNCo) - Universidad Nacional del Comahuefalse |
dc.title.none.fl_str_mv |
Forecasting virus outbreaks with social media data via neural ordinary differential equations |
title |
Forecasting virus outbreaks with social media data via neural ordinary differential equations |
spellingShingle |
Forecasting virus outbreaks with social media data via neural ordinary differential equations Núñez, Matías Redes sociales Datos recopilados Ecuación diferencial ordinaria neural Brotes de virus COVID-19 Ciencias Biomédicas |
title_short |
Forecasting virus outbreaks with social media data via neural ordinary differential equations |
title_full |
Forecasting virus outbreaks with social media data via neural ordinary differential equations |
title_fullStr |
Forecasting virus outbreaks with social media data via neural ordinary differential equations |
title_full_unstemmed |
Forecasting virus outbreaks with social media data via neural ordinary differential equations |
title_sort |
Forecasting virus outbreaks with social media data via neural ordinary differential equations |
dc.creator.none.fl_str_mv |
Núñez, Matías Barreiro, Nadia L. Barrio, Rafael A. Rackauckas, Christopher |
author |
Núñez, Matías |
author_facet |
Núñez, Matías Barreiro, Nadia L. Barrio, Rafael A. Rackauckas, Christopher |
author_role |
author |
author2 |
Barreiro, Nadia L. Barrio, Rafael A. Rackauckas, Christopher |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Redes sociales Datos recopilados Ecuación diferencial ordinaria neural Brotes de virus COVID-19 Ciencias Biomédicas |
topic |
Redes sociales Datos recopilados Ecuación diferencial ordinaria neural Brotes de virus COVID-19 Ciencias Biomédicas |
dc.description.none.fl_txt_mv |
In the midst of the covid-19 pandemic, social media data collected in real time has the potential of being an early indicator of a new epidemic wave. This possibility is explored here by using a neural ordinary differential equation (neural ODE) that is trained to predict virus outbreaks for a geographic region. It learns from multivariate time series of signals obtained from a novel set of massive online surveys about COVID-19 symptoms. Once trained, the neural ODE is able to capture the dynamics of the interlinked local signals and accurately predict the number of new infections up to two months in advance. Moreover, it can estimate the future effects of changes in the number of infected at a given time, which can be associated with the flow of people entering or leaving a given region or, for instance, with a local vaccination campaign. This work gives compelling preliminary evidence for the predictive power of widely distributed social media surveys for public health application Fil: Núñez, Matías. Universidad Nacional del Comahue. INIBIOMA. CNEA. CONICET; Argentina. |
description |
In the midst of the covid-19 pandemic, social media data collected in real time has the potential of being an early indicator of a new epidemic wave. This possibility is explored here by using a neural ordinary differential equation (neural ODE) that is trained to predict virus outbreaks for a geographic region. It learns from multivariate time series of signals obtained from a novel set of massive online surveys about COVID-19 symptoms. Once trained, the neural ODE is able to capture the dynamics of the interlinked local signals and accurately predict the number of new infections up to two months in advance. Moreover, it can estimate the future effects of changes in the number of infected at a given time, which can be associated with the flow of people entering or leaving a given region or, for instance, with a local vaccination campaign. This work gives compelling preliminary evidence for the predictive power of widely distributed social media surveys for public health application |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://rdi.uncoma.edu.ar/handle/uncomaid/16169 |
url |
http://rdi.uncoma.edu.ar/handle/uncomaid/16169 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://www.medrxiv.org/content/10.1101/2021.01.27.21250642v1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
medRxiv Cold Spring Harbor Laboratory Universidad de Yale BMJ |
publisher.none.fl_str_mv |
medRxiv Cold Spring Harbor Laboratory Universidad de Yale BMJ |
dc.source.none.fl_str_mv |
MedRxiv the preprint server for health sciences reponame:Repositorio Digital Institucional (UNCo) instname:Universidad Nacional del Comahue |
reponame_str |
Repositorio Digital Institucional (UNCo) |
collection |
Repositorio Digital Institucional (UNCo) |
instname_str |
Universidad Nacional del Comahue |
repository.name.fl_str_mv |
Repositorio Digital Institucional (UNCo) - Universidad Nacional del Comahue |
repository.mail.fl_str_mv |
mirtha.mateo@biblioteca.uncoma.edu.ar; adriana.acuna@biblioteca.uncoma.edu.ar |
_version_ |
1844621560927748096 |
score |
12.558318 |