Sunpheno: A Deep Neural Network for Phenological Classification of Sunflower Images
- Autores
- Bengoa Luoni, Sofia Ailin; Ricci, Riccardo; Corzo, Melanie Anahi; Hoxha, Genc; Melgani, Farid; Fernández, Paula del Carmen
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Leaf senescence is a complex trait which becomes crucial for grain filling because photoassimilates are translocated to the seeds. Therefore, a correct sync between leaf senescence and phenological stages is necessary to obtain increasing yields. In this study, we evaluated the performance of five deep machine-learning methods for the evaluation of the phenological stages of sunflowers using images taken with cell phones in the field. From the analysis, we found that the method based on the pre-trained network resnet50 outperformed the other methods, both in terms of accuracy and velocity. Finally, the model generated, Sunpheno, was used to evaluate the phenological stages of two contrasting lines, B481_6 and R453, during senescence. We observed clear differences in phenological stages, confirming the results obtained in previous studies. A database with 5000 images was generated and was classified by an expert. This is important to end the subjectivity involved in decision making regarding the progression of this trait in the field and could be correlated with performance and senescence parameters that are highly associated with yield increase.
Fil: Bengoa Luoni, Sofia Ailin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ricci, Riccardo. Universita degli Studi di Trento; Italia
Fil: Corzo, Melanie Anahi. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Hoxha, Genc. Freie Universität Berlin; Alemania
Fil: Melgani, Farid. Universita degli Studi di Trento; Italia
Fil: Fernández, Paula del Carmen. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina - Materia
-
PHENOLOGY
SENESCENCE
DEEP MACHINE LEARNING
SUNFLOWER - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/265392
Ver los metadatos del registro completo
id |
CONICETDig_e2cc292f361d5e156fd5f30f778290c1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/265392 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Sunpheno: A Deep Neural Network for Phenological Classification of Sunflower ImagesBengoa Luoni, Sofia AilinRicci, RiccardoCorzo, Melanie AnahiHoxha, GencMelgani, FaridFernández, Paula del CarmenPHENOLOGYSENESCENCEDEEP MACHINE LEARNINGSUNFLOWERhttps://purl.org/becyt/ford/4.4https://purl.org/becyt/ford/4Leaf senescence is a complex trait which becomes crucial for grain filling because photoassimilates are translocated to the seeds. Therefore, a correct sync between leaf senescence and phenological stages is necessary to obtain increasing yields. In this study, we evaluated the performance of five deep machine-learning methods for the evaluation of the phenological stages of sunflowers using images taken with cell phones in the field. From the analysis, we found that the method based on the pre-trained network resnet50 outperformed the other methods, both in terms of accuracy and velocity. Finally, the model generated, Sunpheno, was used to evaluate the phenological stages of two contrasting lines, B481_6 and R453, during senescence. We observed clear differences in phenological stages, confirming the results obtained in previous studies. A database with 5000 images was generated and was classified by an expert. This is important to end the subjectivity involved in decision making regarding the progression of this trait in the field and could be correlated with performance and senescence parameters that are highly associated with yield increase.Fil: Bengoa Luoni, Sofia Ailin. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ricci, Riccardo. Universita degli Studi di Trento; ItaliaFil: Corzo, Melanie Anahi. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Hoxha, Genc. Freie Universität Berlin; AlemaniaFil: Melgani, Farid. Universita degli Studi di Trento; ItaliaFil: Fernández, Paula del Carmen. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaMDPI2024-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265392Bengoa Luoni, Sofia Ailin; Ricci, Riccardo; Corzo, Melanie Anahi; Hoxha, Genc; Melgani, Farid; et al.; Sunpheno: A Deep Neural Network for Phenological Classification of Sunflower Images; MDPI; Plants; 13; 14; 7-2024; 1-152223-7747CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2223-7747/13/14/1998info:eu-repo/semantics/altIdentifier/doi/10.3390/plants13141998info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:22:18Zoai:ri.conicet.gov.ar:11336/265392instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:22:18.898CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Sunpheno: A Deep Neural Network for Phenological Classification of Sunflower Images |
title |
Sunpheno: A Deep Neural Network for Phenological Classification of Sunflower Images |
spellingShingle |
Sunpheno: A Deep Neural Network for Phenological Classification of Sunflower Images Bengoa Luoni, Sofia Ailin PHENOLOGY SENESCENCE DEEP MACHINE LEARNING SUNFLOWER |
title_short |
Sunpheno: A Deep Neural Network for Phenological Classification of Sunflower Images |
title_full |
Sunpheno: A Deep Neural Network for Phenological Classification of Sunflower Images |
title_fullStr |
Sunpheno: A Deep Neural Network for Phenological Classification of Sunflower Images |
title_full_unstemmed |
Sunpheno: A Deep Neural Network for Phenological Classification of Sunflower Images |
title_sort |
Sunpheno: A Deep Neural Network for Phenological Classification of Sunflower Images |
dc.creator.none.fl_str_mv |
Bengoa Luoni, Sofia Ailin Ricci, Riccardo Corzo, Melanie Anahi Hoxha, Genc Melgani, Farid Fernández, Paula del Carmen |
author |
Bengoa Luoni, Sofia Ailin |
author_facet |
Bengoa Luoni, Sofia Ailin Ricci, Riccardo Corzo, Melanie Anahi Hoxha, Genc Melgani, Farid Fernández, Paula del Carmen |
author_role |
author |
author2 |
Ricci, Riccardo Corzo, Melanie Anahi Hoxha, Genc Melgani, Farid Fernández, Paula del Carmen |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
PHENOLOGY SENESCENCE DEEP MACHINE LEARNING SUNFLOWER |
topic |
PHENOLOGY SENESCENCE DEEP MACHINE LEARNING SUNFLOWER |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.4 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Leaf senescence is a complex trait which becomes crucial for grain filling because photoassimilates are translocated to the seeds. Therefore, a correct sync between leaf senescence and phenological stages is necessary to obtain increasing yields. In this study, we evaluated the performance of five deep machine-learning methods for the evaluation of the phenological stages of sunflowers using images taken with cell phones in the field. From the analysis, we found that the method based on the pre-trained network resnet50 outperformed the other methods, both in terms of accuracy and velocity. Finally, the model generated, Sunpheno, was used to evaluate the phenological stages of two contrasting lines, B481_6 and R453, during senescence. We observed clear differences in phenological stages, confirming the results obtained in previous studies. A database with 5000 images was generated and was classified by an expert. This is important to end the subjectivity involved in decision making regarding the progression of this trait in the field and could be correlated with performance and senescence parameters that are highly associated with yield increase. Fil: Bengoa Luoni, Sofia Ailin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Ricci, Riccardo. Universita degli Studi di Trento; Italia Fil: Corzo, Melanie Anahi. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina Fil: Hoxha, Genc. Freie Universität Berlin; Alemania Fil: Melgani, Farid. Universita degli Studi di Trento; Italia Fil: Fernández, Paula del Carmen. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina |
description |
Leaf senescence is a complex trait which becomes crucial for grain filling because photoassimilates are translocated to the seeds. Therefore, a correct sync between leaf senescence and phenological stages is necessary to obtain increasing yields. In this study, we evaluated the performance of five deep machine-learning methods for the evaluation of the phenological stages of sunflowers using images taken with cell phones in the field. From the analysis, we found that the method based on the pre-trained network resnet50 outperformed the other methods, both in terms of accuracy and velocity. Finally, the model generated, Sunpheno, was used to evaluate the phenological stages of two contrasting lines, B481_6 and R453, during senescence. We observed clear differences in phenological stages, confirming the results obtained in previous studies. A database with 5000 images was generated and was classified by an expert. This is important to end the subjectivity involved in decision making regarding the progression of this trait in the field and could be correlated with performance and senescence parameters that are highly associated with yield increase. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/265392 Bengoa Luoni, Sofia Ailin; Ricci, Riccardo; Corzo, Melanie Anahi; Hoxha, Genc; Melgani, Farid; et al.; Sunpheno: A Deep Neural Network for Phenological Classification of Sunflower Images; MDPI; Plants; 13; 14; 7-2024; 1-15 2223-7747 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/265392 |
identifier_str_mv |
Bengoa Luoni, Sofia Ailin; Ricci, Riccardo; Corzo, Melanie Anahi; Hoxha, Genc; Melgani, Farid; et al.; Sunpheno: A Deep Neural Network for Phenological Classification of Sunflower Images; MDPI; Plants; 13; 14; 7-2024; 1-15 2223-7747 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2223-7747/13/14/1998 info:eu-repo/semantics/altIdentifier/doi/10.3390/plants13141998 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082621528866816 |
score |
13.22299 |