The relative Lyapunov indicators: Theory and application to dynamical astronomy

Autores
Sándor, Zsolt; Maffione, Nicolas Pablo
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A recently introduced chaos detection method, the Relative Lyapunov Indicator (RLI) is investigated in the cases of symplectic mappings and continuous Hamiltonian systems. It is shown that the RLI is an efficient numerical tool in determining the true nature of individual orbits, and in separating ordered and chaotic regions of the phase space of dynamical systems. A comparison between the RLI and some other variational indicators are presented, as well as the recent applications of the RLI to various problems of dynamical astronomy.
Fil: Sándor, Zsolt. Hungarian Academy of Sciences; Hungría
Fil: Maffione, Nicolas Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Materia
RLI
Planetary System
Giant Planet
Chaotic Orbit
Regular Orbit
Dark Matter Halo
Relative Lyapunov Indicator
Hamiltonian systems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/97119

id CONICETDig_051986bb99d021960fe119d6e856daba
oai_identifier_str oai:ri.conicet.gov.ar:11336/97119
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The relative Lyapunov indicators: Theory and application to dynamical astronomySándor, ZsoltMaffione, Nicolas PabloRLIPlanetary SystemGiant PlanetChaotic OrbitRegular OrbitDark Matter HaloRelative Lyapunov IndicatorHamiltonian systemshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A recently introduced chaos detection method, the Relative Lyapunov Indicator (RLI) is investigated in the cases of symplectic mappings and continuous Hamiltonian systems. It is shown that the RLI is an efficient numerical tool in determining the true nature of individual orbits, and in separating ordered and chaotic regions of the phase space of dynamical systems. A comparison between the RLI and some other variational indicators are presented, as well as the recent applications of the RLI to various problems of dynamical astronomy.Fil: Sándor, Zsolt. Hungarian Academy of Sciences; HungríaFil: Maffione, Nicolas Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaSpringer2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97119Sándor, Zsolt; Maffione, Nicolas Pablo; The relative Lyapunov indicators: Theory and application to dynamical astronomy; Springer; Lecture Notes In Physics; 915; 3-2016; 183-2200075-8450CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-662-48410-4_6info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-662-48410-4_6info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1501.07264info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:59:52Zoai:ri.conicet.gov.ar:11336/97119instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:59:52.39CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The relative Lyapunov indicators: Theory and application to dynamical astronomy
title The relative Lyapunov indicators: Theory and application to dynamical astronomy
spellingShingle The relative Lyapunov indicators: Theory and application to dynamical astronomy
Sándor, Zsolt
RLI
Planetary System
Giant Planet
Chaotic Orbit
Regular Orbit
Dark Matter Halo
Relative Lyapunov Indicator
Hamiltonian systems
title_short The relative Lyapunov indicators: Theory and application to dynamical astronomy
title_full The relative Lyapunov indicators: Theory and application to dynamical astronomy
title_fullStr The relative Lyapunov indicators: Theory and application to dynamical astronomy
title_full_unstemmed The relative Lyapunov indicators: Theory and application to dynamical astronomy
title_sort The relative Lyapunov indicators: Theory and application to dynamical astronomy
dc.creator.none.fl_str_mv Sándor, Zsolt
Maffione, Nicolas Pablo
author Sándor, Zsolt
author_facet Sándor, Zsolt
Maffione, Nicolas Pablo
author_role author
author2 Maffione, Nicolas Pablo
author2_role author
dc.subject.none.fl_str_mv RLI
Planetary System
Giant Planet
Chaotic Orbit
Regular Orbit
Dark Matter Halo
Relative Lyapunov Indicator
Hamiltonian systems
topic RLI
Planetary System
Giant Planet
Chaotic Orbit
Regular Orbit
Dark Matter Halo
Relative Lyapunov Indicator
Hamiltonian systems
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A recently introduced chaos detection method, the Relative Lyapunov Indicator (RLI) is investigated in the cases of symplectic mappings and continuous Hamiltonian systems. It is shown that the RLI is an efficient numerical tool in determining the true nature of individual orbits, and in separating ordered and chaotic regions of the phase space of dynamical systems. A comparison between the RLI and some other variational indicators are presented, as well as the recent applications of the RLI to various problems of dynamical astronomy.
Fil: Sándor, Zsolt. Hungarian Academy of Sciences; Hungría
Fil: Maffione, Nicolas Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
description A recently introduced chaos detection method, the Relative Lyapunov Indicator (RLI) is investigated in the cases of symplectic mappings and continuous Hamiltonian systems. It is shown that the RLI is an efficient numerical tool in determining the true nature of individual orbits, and in separating ordered and chaotic regions of the phase space of dynamical systems. A comparison between the RLI and some other variational indicators are presented, as well as the recent applications of the RLI to various problems of dynamical astronomy.
publishDate 2016
dc.date.none.fl_str_mv 2016-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/97119
Sándor, Zsolt; Maffione, Nicolas Pablo; The relative Lyapunov indicators: Theory and application to dynamical astronomy; Springer; Lecture Notes In Physics; 915; 3-2016; 183-220
0075-8450
CONICET Digital
CONICET
url http://hdl.handle.net/11336/97119
identifier_str_mv Sándor, Zsolt; Maffione, Nicolas Pablo; The relative Lyapunov indicators: Theory and application to dynamical astronomy; Springer; Lecture Notes In Physics; 915; 3-2016; 183-220
0075-8450
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-662-48410-4_6
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-662-48410-4_6
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1501.07264
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782321561174016
score 12.982451