Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method

Autores
Cincotta, Pablo Miguel; Giordano, Claudia Marcela
Año de publicación
2016
Idioma
inglés
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
In this chapter we discuss in a pedagogical way and from the very beginning the Mean Exponential Growth factor of Nearby Orbits (MEGNO) method, that has proven, in the last ten years, to be efficient to investigate both regular and chaotic components of phase space of a Hamiltonian system. It is a fast indicator that provides a clear picture of the resonance structure, the location of stable and unstable periodic orbits as well as a measure of hyperbolicity in chaotic domains which coincides with that given by the maximum Lyapunov characteristic exponent but in a shorter evolution time. Applications of the MEGNO to simple discrete and continuous dynamical systems are discussed and an overview of the stability studies present in the literature encompassing quite different dynamical systems is provided.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Física
Periodic orbit
Chaotic motion
Chaotic orbit
Regular orbit
Regular motion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/144606

id SEDICI_26994a4235e636753977a6ac6c264990
oai_identifier_str oai:sedici.unlp.edu.ar:10915/144606
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) MethodCincotta, Pablo MiguelGiordano, Claudia MarcelaFísicaPeriodic orbitChaotic motionChaotic orbitRegular orbitRegular motionIn this chapter we discuss in a pedagogical way and from the very beginning the Mean Exponential Growth factor of Nearby Orbits (MEGNO) method, that has proven, in the last ten years, to be efficient to investigate both regular and chaotic components of phase space of a Hamiltonian system. It is a fast indicator that provides a clear picture of the resonance structure, the location of stable and unstable periodic orbits as well as a measure of hyperbolicity in chaotic domains which coincides with that given by the maximum Lyapunov characteristic exponent but in a shorter evolution time. Applications of the MEGNO to simple discrete and continuous dynamical systems are discussed and an overview of the stability studies present in the literature encompassing quite different dynamical systems is provided.Facultad de Ciencias Astronómicas y GeofísicasSpringer2016-03-04info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionCapitulo de librohttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdf93-128http://sedici.unlp.edu.ar/handle/10915/144606enginfo:eu-repo/semantics/altIdentifier/isbn/978-3-662-48410-4info:eu-repo/semantics/altIdentifier/issn/0075-8450info:eu-repo/semantics/altIdentifier/issn/1616-6361info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-662-48410-4_4info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T10:15:15Zoai:sedici.unlp.edu.ar:10915/144606Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 10:15:15.32SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method
title Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method
spellingShingle Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method
Cincotta, Pablo Miguel
Física
Periodic orbit
Chaotic motion
Chaotic orbit
Regular orbit
Regular motion
title_short Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method
title_full Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method
title_fullStr Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method
title_full_unstemmed Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method
title_sort Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method
dc.creator.none.fl_str_mv Cincotta, Pablo Miguel
Giordano, Claudia Marcela
author Cincotta, Pablo Miguel
author_facet Cincotta, Pablo Miguel
Giordano, Claudia Marcela
author_role author
author2 Giordano, Claudia Marcela
author2_role author
dc.subject.none.fl_str_mv Física
Periodic orbit
Chaotic motion
Chaotic orbit
Regular orbit
Regular motion
topic Física
Periodic orbit
Chaotic motion
Chaotic orbit
Regular orbit
Regular motion
dc.description.none.fl_txt_mv In this chapter we discuss in a pedagogical way and from the very beginning the Mean Exponential Growth factor of Nearby Orbits (MEGNO) method, that has proven, in the last ten years, to be efficient to investigate both regular and chaotic components of phase space of a Hamiltonian system. It is a fast indicator that provides a clear picture of the resonance structure, the location of stable and unstable periodic orbits as well as a measure of hyperbolicity in chaotic domains which coincides with that given by the maximum Lyapunov characteristic exponent but in a shorter evolution time. Applications of the MEGNO to simple discrete and continuous dynamical systems are discussed and an overview of the stability studies present in the literature encompassing quite different dynamical systems is provided.
Facultad de Ciencias Astronómicas y Geofísicas
description In this chapter we discuss in a pedagogical way and from the very beginning the Mean Exponential Growth factor of Nearby Orbits (MEGNO) method, that has proven, in the last ten years, to be efficient to investigate both regular and chaotic components of phase space of a Hamiltonian system. It is a fast indicator that provides a clear picture of the resonance structure, the location of stable and unstable periodic orbits as well as a measure of hyperbolicity in chaotic domains which coincides with that given by the maximum Lyapunov characteristic exponent but in a shorter evolution time. Applications of the MEGNO to simple discrete and continuous dynamical systems are discussed and an overview of the stability studies present in the literature encompassing quite different dynamical systems is provided.
publishDate 2016
dc.date.none.fl_str_mv 2016-03-04
dc.type.none.fl_str_mv info:eu-repo/semantics/bookPart
info:eu-repo/semantics/publishedVersion
Capitulo de libro
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
format bookPart
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/144606
url http://sedici.unlp.edu.ar/handle/10915/144606
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-3-662-48410-4
info:eu-repo/semantics/altIdentifier/issn/0075-8450
info:eu-repo/semantics/altIdentifier/issn/1616-6361
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-662-48410-4_4
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
93-128
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1843532795606990848
score 13.000565