Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method
- Autores
- Cincotta, Pablo Miguel; Giordano, Claudia Marcela
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- parte de libro
- Estado
- versión publicada
- Descripción
- In this chapter we discuss in a pedagogical way and from the very beginning the Mean Exponential Growth factor of Nearby Orbits (MEGNO) method, that has proven, in the last ten years, to be efficient to investigate both regular and chaotic components of phase space of a Hamiltonian system. It is a fast indicator that provides a clear picture of the resonance structure, the location of stable and unstable periodic orbits as well as a measure of hyperbolicity in chaotic domains which coincides with that given by the maximum Lyapunov characteristic exponent but in a shorter evolution time. Applications of the MEGNO to simple discrete and continuous dynamical systems are discussed and an overview of the stability studies present in the literature encompassing quite different dynamical systems is provided.
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Física
Periodic orbit
Chaotic motion
Chaotic orbit
Regular orbit
Regular motion - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/144606
Ver los metadatos del registro completo
id |
SEDICI_26994a4235e636753977a6ac6c264990 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/144606 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) MethodCincotta, Pablo MiguelGiordano, Claudia MarcelaFísicaPeriodic orbitChaotic motionChaotic orbitRegular orbitRegular motionIn this chapter we discuss in a pedagogical way and from the very beginning the Mean Exponential Growth factor of Nearby Orbits (MEGNO) method, that has proven, in the last ten years, to be efficient to investigate both regular and chaotic components of phase space of a Hamiltonian system. It is a fast indicator that provides a clear picture of the resonance structure, the location of stable and unstable periodic orbits as well as a measure of hyperbolicity in chaotic domains which coincides with that given by the maximum Lyapunov characteristic exponent but in a shorter evolution time. Applications of the MEGNO to simple discrete and continuous dynamical systems are discussed and an overview of the stability studies present in the literature encompassing quite different dynamical systems is provided.Facultad de Ciencias Astronómicas y GeofísicasSpringer2016-03-04info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionCapitulo de librohttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdf93-128http://sedici.unlp.edu.ar/handle/10915/144606enginfo:eu-repo/semantics/altIdentifier/isbn/978-3-662-48410-4info:eu-repo/semantics/altIdentifier/issn/0075-8450info:eu-repo/semantics/altIdentifier/issn/1616-6361info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-662-48410-4_4info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T10:15:15Zoai:sedici.unlp.edu.ar:10915/144606Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 10:15:15.32SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method |
title |
Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method |
spellingShingle |
Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method Cincotta, Pablo Miguel Física Periodic orbit Chaotic motion Chaotic orbit Regular orbit Regular motion |
title_short |
Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method |
title_full |
Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method |
title_fullStr |
Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method |
title_full_unstemmed |
Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method |
title_sort |
Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method |
dc.creator.none.fl_str_mv |
Cincotta, Pablo Miguel Giordano, Claudia Marcela |
author |
Cincotta, Pablo Miguel |
author_facet |
Cincotta, Pablo Miguel Giordano, Claudia Marcela |
author_role |
author |
author2 |
Giordano, Claudia Marcela |
author2_role |
author |
dc.subject.none.fl_str_mv |
Física Periodic orbit Chaotic motion Chaotic orbit Regular orbit Regular motion |
topic |
Física Periodic orbit Chaotic motion Chaotic orbit Regular orbit Regular motion |
dc.description.none.fl_txt_mv |
In this chapter we discuss in a pedagogical way and from the very beginning the Mean Exponential Growth factor of Nearby Orbits (MEGNO) method, that has proven, in the last ten years, to be efficient to investigate both regular and chaotic components of phase space of a Hamiltonian system. It is a fast indicator that provides a clear picture of the resonance structure, the location of stable and unstable periodic orbits as well as a measure of hyperbolicity in chaotic domains which coincides with that given by the maximum Lyapunov characteristic exponent but in a shorter evolution time. Applications of the MEGNO to simple discrete and continuous dynamical systems are discussed and an overview of the stability studies present in the literature encompassing quite different dynamical systems is provided. Facultad de Ciencias Astronómicas y Geofísicas |
description |
In this chapter we discuss in a pedagogical way and from the very beginning the Mean Exponential Growth factor of Nearby Orbits (MEGNO) method, that has proven, in the last ten years, to be efficient to investigate both regular and chaotic components of phase space of a Hamiltonian system. It is a fast indicator that provides a clear picture of the resonance structure, the location of stable and unstable periodic orbits as well as a measure of hyperbolicity in chaotic domains which coincides with that given by the maximum Lyapunov characteristic exponent but in a shorter evolution time. Applications of the MEGNO to simple discrete and continuous dynamical systems are discussed and an overview of the stability studies present in the literature encompassing quite different dynamical systems is provided. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bookPart info:eu-repo/semantics/publishedVersion Capitulo de libro http://purl.org/coar/resource_type/c_3248 info:ar-repo/semantics/parteDeLibro |
format |
bookPart |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/144606 |
url |
http://sedici.unlp.edu.ar/handle/10915/144606 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-3-662-48410-4 info:eu-repo/semantics/altIdentifier/issn/0075-8450 info:eu-repo/semantics/altIdentifier/issn/1616-6361 info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-662-48410-4_4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 93-128 |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1843532795606990848 |
score |
13.000565 |