Uniform stability of the ball with respect to the first Dirichlet and Neumann infinity-eigenvalues

Autores
Da Silva, Joao Vitor; Rossi, Julio Daniel; Salort, Ariel Martin
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this note we analyze how perturbations of a ball Br ⊂ Rn behaves in terms of their first (non-trivial) Neumann and Dirichlet ∞−eigenvalues when a volume constraint Ln(Ω) = Ln(Br) is imposed. Our main result states that Ω is uniformly close to a ball when it has first Neumann and Dirichlet eigenvalues close to the ones for the ball of the same volume Br. In fact, we show that, if |λ D 1,∞(Ω) − λ D 1,∞(Br)| = δ1 and |λ N 1,∞(Ω) − λ N 1,∞(Br)| = δ2, then there are two balls such that B r δ1r+1 ⊂ Ω ⊂ B r+δ2r 1−δ2r . In addition, we also obtain a result concerning stability of the Dirichlet ∞−eigenfunctions.
Fil: Da Silva, Joao Vitor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
∞−eigenvalues estimates
∞−eigenvalue problem
approximation of domains
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/89737

id CONICETDig_04d1a3aa68a3ac38547a9026c0970939
oai_identifier_str oai:ri.conicet.gov.ar:11336/89737
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Uniform stability of the ball with respect to the first Dirichlet and Neumann infinity-eigenvaluesDa Silva, Joao VitorRossi, Julio DanielSalort, Ariel Martin∞−eigenvalues estimates∞−eigenvalue problemapproximation of domainshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this note we analyze how perturbations of a ball Br ⊂ Rn behaves in terms of their first (non-trivial) Neumann and Dirichlet ∞−eigenvalues when a volume constraint Ln(Ω) = Ln(Br) is imposed. Our main result states that Ω is uniformly close to a ball when it has first Neumann and Dirichlet eigenvalues close to the ones for the ball of the same volume Br. In fact, we show that, if |λ D 1,∞(Ω) − λ D 1,∞(Br)| = δ1 and |λ N 1,∞(Ω) − λ N 1,∞(Br)| = δ2, then there are two balls such that B r δ1r+1 ⊂ Ω ⊂ B r+δ2r 1−δ2r . In addition, we also obtain a result concerning stability of the Dirichlet ∞−eigenfunctions.Fil: Da Silva, Joao Vitor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaTexas State University, Department of Mathematics2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89737Da Silva, Joao Vitor; Rossi, Julio Daniel; Salort, Ariel Martin; Uniform stability of the ball with respect to the first Dirichlet and Neumann infinity-eigenvalues; Texas State University, Department of Mathematics; Electronic Journal of Differential Equations; 2018; 7; 1-2018; 1-91072-6691CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2018/07/abstr.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:06Zoai:ri.conicet.gov.ar:11336/89737instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:06.985CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Uniform stability of the ball with respect to the first Dirichlet and Neumann infinity-eigenvalues
title Uniform stability of the ball with respect to the first Dirichlet and Neumann infinity-eigenvalues
spellingShingle Uniform stability of the ball with respect to the first Dirichlet and Neumann infinity-eigenvalues
Da Silva, Joao Vitor
∞−eigenvalues estimates
∞−eigenvalue problem
approximation of domains
title_short Uniform stability of the ball with respect to the first Dirichlet and Neumann infinity-eigenvalues
title_full Uniform stability of the ball with respect to the first Dirichlet and Neumann infinity-eigenvalues
title_fullStr Uniform stability of the ball with respect to the first Dirichlet and Neumann infinity-eigenvalues
title_full_unstemmed Uniform stability of the ball with respect to the first Dirichlet and Neumann infinity-eigenvalues
title_sort Uniform stability of the ball with respect to the first Dirichlet and Neumann infinity-eigenvalues
dc.creator.none.fl_str_mv Da Silva, Joao Vitor
Rossi, Julio Daniel
Salort, Ariel Martin
author Da Silva, Joao Vitor
author_facet Da Silva, Joao Vitor
Rossi, Julio Daniel
Salort, Ariel Martin
author_role author
author2 Rossi, Julio Daniel
Salort, Ariel Martin
author2_role author
author
dc.subject.none.fl_str_mv ∞−eigenvalues estimates
∞−eigenvalue problem
approximation of domains
topic ∞−eigenvalues estimates
∞−eigenvalue problem
approximation of domains
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this note we analyze how perturbations of a ball Br ⊂ Rn behaves in terms of their first (non-trivial) Neumann and Dirichlet ∞−eigenvalues when a volume constraint Ln(Ω) = Ln(Br) is imposed. Our main result states that Ω is uniformly close to a ball when it has first Neumann and Dirichlet eigenvalues close to the ones for the ball of the same volume Br. In fact, we show that, if |λ D 1,∞(Ω) − λ D 1,∞(Br)| = δ1 and |λ N 1,∞(Ω) − λ N 1,∞(Br)| = δ2, then there are two balls such that B r δ1r+1 ⊂ Ω ⊂ B r+δ2r 1−δ2r . In addition, we also obtain a result concerning stability of the Dirichlet ∞−eigenfunctions.
Fil: Da Silva, Joao Vitor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description In this note we analyze how perturbations of a ball Br ⊂ Rn behaves in terms of their first (non-trivial) Neumann and Dirichlet ∞−eigenvalues when a volume constraint Ln(Ω) = Ln(Br) is imposed. Our main result states that Ω is uniformly close to a ball when it has first Neumann and Dirichlet eigenvalues close to the ones for the ball of the same volume Br. In fact, we show that, if |λ D 1,∞(Ω) − λ D 1,∞(Br)| = δ1 and |λ N 1,∞(Ω) − λ N 1,∞(Br)| = δ2, then there are two balls such that B r δ1r+1 ⊂ Ω ⊂ B r+δ2r 1−δ2r . In addition, we also obtain a result concerning stability of the Dirichlet ∞−eigenfunctions.
publishDate 2018
dc.date.none.fl_str_mv 2018-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/89737
Da Silva, Joao Vitor; Rossi, Julio Daniel; Salort, Ariel Martin; Uniform stability of the ball with respect to the first Dirichlet and Neumann infinity-eigenvalues; Texas State University, Department of Mathematics; Electronic Journal of Differential Equations; 2018; 7; 1-2018; 1-9
1072-6691
CONICET Digital
CONICET
url http://hdl.handle.net/11336/89737
identifier_str_mv Da Silva, Joao Vitor; Rossi, Julio Daniel; Salort, Ariel Martin; Uniform stability of the ball with respect to the first Dirichlet and Neumann infinity-eigenvalues; Texas State University, Department of Mathematics; Electronic Journal of Differential Equations; 2018; 7; 1-2018; 1-9
1072-6691
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2018/07/abstr.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Texas State University, Department of Mathematics
publisher.none.fl_str_mv Texas State University, Department of Mathematics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613756427960320
score 13.070432