T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells
- Autores
- Beining, Marcel; Mongiat, Lucas Alberto; Schwarzacher, Stephan Wolfgang; Cuntz, Hermann; Jedlicka, Peter
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Compartmental models are the theoretical tool of choice for understanding single neuron computations. However, many models are incomplete, built ad hoc and require tuning for each novel condition rendering them of limited usability. Here, we present T2N, a powerful interface to control NEURON with Matlab and TREES toolbox, which supports generating models stable over a broad range of reconstructed and synthetic morphologies. We illustrate this for a novel, highly detailed active model of dentate granule cells (GCs) replicating a wide palette of experiments from various labs. By implementing known differences in ion channel composition and morphology, our model reproduces data from mouse or rat, mature or adult-born GCs as well as pharmacological interventions and epileptic conditions. This work sets a new benchmark for detailed compartmental modeling. T2N is suitable for creating robust models useful for large-scale networks that could lead to novel predictions. We discuss possible T2N application in degeneracy studies.
Fil: Beining, Marcel. Ernst Strungmann Institute; Alemania. Frankfurt Institute for Advanced Studies; Alemania. Goethe Universitat Frankfurt; Alemania
Fil: Mongiat, Lucas Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Schwarzacher, Stephan Wolfgang. Goethe Universitat Frankfurt; Alemania
Fil: Cuntz, Hermann. Frankfurt Institute for Advanced Studies; Alemania. Ernst Strungmann Institute; Alemania
Fil: Jedlicka, Peter. Goethe Universitat Frankfurt; Alemania - Materia
-
NEURONAL MODELING
HIPPOCAMPUS
ADULT NEUROGENESIS
COMPARTMENTAL MODELING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/69639
Ver los metadatos del registro completo
id |
CONICETDig_046b46bdb400ee0b996eb31e09be533e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/69639 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cellsBeining, MarcelMongiat, Lucas AlbertoSchwarzacher, Stephan WolfgangCuntz, HermannJedlicka, PeterNEURONAL MODELINGHIPPOCAMPUSADULT NEUROGENESISCOMPARTMENTAL MODELINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Compartmental models are the theoretical tool of choice for understanding single neuron computations. However, many models are incomplete, built ad hoc and require tuning for each novel condition rendering them of limited usability. Here, we present T2N, a powerful interface to control NEURON with Matlab and TREES toolbox, which supports generating models stable over a broad range of reconstructed and synthetic morphologies. We illustrate this for a novel, highly detailed active model of dentate granule cells (GCs) replicating a wide palette of experiments from various labs. By implementing known differences in ion channel composition and morphology, our model reproduces data from mouse or rat, mature or adult-born GCs as well as pharmacological interventions and epileptic conditions. This work sets a new benchmark for detailed compartmental modeling. T2N is suitable for creating robust models useful for large-scale networks that could lead to novel predictions. We discuss possible T2N application in degeneracy studies.Fil: Beining, Marcel. Ernst Strungmann Institute; Alemania. Frankfurt Institute for Advanced Studies; Alemania. Goethe Universitat Frankfurt; AlemaniaFil: Mongiat, Lucas Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Schwarzacher, Stephan Wolfgang. Goethe Universitat Frankfurt; AlemaniaFil: Cuntz, Hermann. Frankfurt Institute for Advanced Studies; Alemania. Ernst Strungmann Institute; AlemaniaFil: Jedlicka, Peter. Goethe Universitat Frankfurt; AlemaniaeLife Sciences Publications Ltd2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/69639Beining, Marcel; Mongiat, Lucas Alberto; Schwarzacher, Stephan Wolfgang; Cuntz, Hermann; Jedlicka, Peter; T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells; eLife Sciences Publications Ltd; eLife; 6; 11-2017; 1-562050-084XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.7554/eLife.26517.001info:eu-repo/semantics/altIdentifier/url/https://elifesciences.org/articles/26517info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:10:22Zoai:ri.conicet.gov.ar:11336/69639instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:10:22.736CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells |
title |
T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells |
spellingShingle |
T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells Beining, Marcel NEURONAL MODELING HIPPOCAMPUS ADULT NEUROGENESIS COMPARTMENTAL MODELING |
title_short |
T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells |
title_full |
T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells |
title_fullStr |
T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells |
title_full_unstemmed |
T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells |
title_sort |
T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells |
dc.creator.none.fl_str_mv |
Beining, Marcel Mongiat, Lucas Alberto Schwarzacher, Stephan Wolfgang Cuntz, Hermann Jedlicka, Peter |
author |
Beining, Marcel |
author_facet |
Beining, Marcel Mongiat, Lucas Alberto Schwarzacher, Stephan Wolfgang Cuntz, Hermann Jedlicka, Peter |
author_role |
author |
author2 |
Mongiat, Lucas Alberto Schwarzacher, Stephan Wolfgang Cuntz, Hermann Jedlicka, Peter |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
NEURONAL MODELING HIPPOCAMPUS ADULT NEUROGENESIS COMPARTMENTAL MODELING |
topic |
NEURONAL MODELING HIPPOCAMPUS ADULT NEUROGENESIS COMPARTMENTAL MODELING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Compartmental models are the theoretical tool of choice for understanding single neuron computations. However, many models are incomplete, built ad hoc and require tuning for each novel condition rendering them of limited usability. Here, we present T2N, a powerful interface to control NEURON with Matlab and TREES toolbox, which supports generating models stable over a broad range of reconstructed and synthetic morphologies. We illustrate this for a novel, highly detailed active model of dentate granule cells (GCs) replicating a wide palette of experiments from various labs. By implementing known differences in ion channel composition and morphology, our model reproduces data from mouse or rat, mature or adult-born GCs as well as pharmacological interventions and epileptic conditions. This work sets a new benchmark for detailed compartmental modeling. T2N is suitable for creating robust models useful for large-scale networks that could lead to novel predictions. We discuss possible T2N application in degeneracy studies. Fil: Beining, Marcel. Ernst Strungmann Institute; Alemania. Frankfurt Institute for Advanced Studies; Alemania. Goethe Universitat Frankfurt; Alemania Fil: Mongiat, Lucas Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina Fil: Schwarzacher, Stephan Wolfgang. Goethe Universitat Frankfurt; Alemania Fil: Cuntz, Hermann. Frankfurt Institute for Advanced Studies; Alemania. Ernst Strungmann Institute; Alemania Fil: Jedlicka, Peter. Goethe Universitat Frankfurt; Alemania |
description |
Compartmental models are the theoretical tool of choice for understanding single neuron computations. However, many models are incomplete, built ad hoc and require tuning for each novel condition rendering them of limited usability. Here, we present T2N, a powerful interface to control NEURON with Matlab and TREES toolbox, which supports generating models stable over a broad range of reconstructed and synthetic morphologies. We illustrate this for a novel, highly detailed active model of dentate granule cells (GCs) replicating a wide palette of experiments from various labs. By implementing known differences in ion channel composition and morphology, our model reproduces data from mouse or rat, mature or adult-born GCs as well as pharmacological interventions and epileptic conditions. This work sets a new benchmark for detailed compartmental modeling. T2N is suitable for creating robust models useful for large-scale networks that could lead to novel predictions. We discuss possible T2N application in degeneracy studies. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/69639 Beining, Marcel; Mongiat, Lucas Alberto; Schwarzacher, Stephan Wolfgang; Cuntz, Hermann; Jedlicka, Peter; T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells; eLife Sciences Publications Ltd; eLife; 6; 11-2017; 1-56 2050-084X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/69639 |
identifier_str_mv |
Beining, Marcel; Mongiat, Lucas Alberto; Schwarzacher, Stephan Wolfgang; Cuntz, Hermann; Jedlicka, Peter; T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells; eLife Sciences Publications Ltd; eLife; 6; 11-2017; 1-56 2050-084X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.7554/eLife.26517.001 info:eu-repo/semantics/altIdentifier/url/https://elifesciences.org/articles/26517 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
eLife Sciences Publications Ltd |
publisher.none.fl_str_mv |
eLife Sciences Publications Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083251884523520 |
score |
12.891075 |