Spherical analysis on homogeneous vector bundles of the 3-dimensional euclidean motion group
- Autores
- Díaz Martín, Rocío Patricia; Levstein, Fernando
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider R3 as a homogeneous manifold for the action of the motion group given by rotations and translations. For an arbitrary τ∈ SO(3) ^ , let Eτ be the homogeneous vector bundle over R3 associated with τ. An interesting problem consists in studying the set of bounded linear operators over the sections of Eτ that are invariant under the action of SO(3) ⋉ R3. Such operators are in correspondence with the End(Vτ) -valued, bi-τ-equivariant, integrable functions on R3 and they form a commutative algebra with the convolution product. We develop the spherical analysis on that algebra, explicitly computing the τ-spherical functions. We first present a set of generators of the algebra of SO(3) ⋉ R3-invariant differential operators non Eτ. We also give an explicit form for the τ-spherical Fourier transform, we deduce an inversion formula and we use it to give a characterization of End(Vτ) -valued, bi-τ-equivariant, functions on R3.
Fil: Díaz Martín, Rocío Patricia. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Levstein, Fernando. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
HARMONIC ANALYSIS
MATRIX SPHERICAL FUNCTIONS
SPHERICAL TRANSFORMS
STRONG GELFAND PAIRS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/89299
Ver los metadatos del registro completo
id |
CONICETDig_03f632405bacbc8e4d7250ca511c0725 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/89299 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Spherical analysis on homogeneous vector bundles of the 3-dimensional euclidean motion groupDíaz Martín, Rocío PatriciaLevstein, FernandoHARMONIC ANALYSISMATRIX SPHERICAL FUNCTIONSSPHERICAL TRANSFORMSSTRONG GELFAND PAIRShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider R3 as a homogeneous manifold for the action of the motion group given by rotations and translations. For an arbitrary τ∈ SO(3) ^ , let Eτ be the homogeneous vector bundle over R3 associated with τ. An interesting problem consists in studying the set of bounded linear operators over the sections of Eτ that are invariant under the action of SO(3) ⋉ R3. Such operators are in correspondence with the End(Vτ) -valued, bi-τ-equivariant, integrable functions on R3 and they form a commutative algebra with the convolution product. We develop the spherical analysis on that algebra, explicitly computing the τ-spherical functions. We first present a set of generators of the algebra of SO(3) ⋉ R3-invariant differential operators non Eτ. We also give an explicit form for the τ-spherical Fourier transform, we deduce an inversion formula and we use it to give a characterization of End(Vτ) -valued, bi-τ-equivariant, functions on R3.Fil: Díaz Martín, Rocío Patricia. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Levstein, Fernando. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaSpringer Wien2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89299Díaz Martín, Rocío Patricia; Levstein, Fernando; Spherical analysis on homogeneous vector bundles of the 3-dimensional euclidean motion group; Springer Wien; Monatshefete Fur Mathematik; 185; 4; 4-2018; 621-6490026-92551436-5081CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00605-017-1123-1info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00605-017-1123-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:33:02Zoai:ri.conicet.gov.ar:11336/89299instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:33:03.226CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Spherical analysis on homogeneous vector bundles of the 3-dimensional euclidean motion group |
title |
Spherical analysis on homogeneous vector bundles of the 3-dimensional euclidean motion group |
spellingShingle |
Spherical analysis on homogeneous vector bundles of the 3-dimensional euclidean motion group Díaz Martín, Rocío Patricia HARMONIC ANALYSIS MATRIX SPHERICAL FUNCTIONS SPHERICAL TRANSFORMS STRONG GELFAND PAIRS |
title_short |
Spherical analysis on homogeneous vector bundles of the 3-dimensional euclidean motion group |
title_full |
Spherical analysis on homogeneous vector bundles of the 3-dimensional euclidean motion group |
title_fullStr |
Spherical analysis on homogeneous vector bundles of the 3-dimensional euclidean motion group |
title_full_unstemmed |
Spherical analysis on homogeneous vector bundles of the 3-dimensional euclidean motion group |
title_sort |
Spherical analysis on homogeneous vector bundles of the 3-dimensional euclidean motion group |
dc.creator.none.fl_str_mv |
Díaz Martín, Rocío Patricia Levstein, Fernando |
author |
Díaz Martín, Rocío Patricia |
author_facet |
Díaz Martín, Rocío Patricia Levstein, Fernando |
author_role |
author |
author2 |
Levstein, Fernando |
author2_role |
author |
dc.subject.none.fl_str_mv |
HARMONIC ANALYSIS MATRIX SPHERICAL FUNCTIONS SPHERICAL TRANSFORMS STRONG GELFAND PAIRS |
topic |
HARMONIC ANALYSIS MATRIX SPHERICAL FUNCTIONS SPHERICAL TRANSFORMS STRONG GELFAND PAIRS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider R3 as a homogeneous manifold for the action of the motion group given by rotations and translations. For an arbitrary τ∈ SO(3) ^ , let Eτ be the homogeneous vector bundle over R3 associated with τ. An interesting problem consists in studying the set of bounded linear operators over the sections of Eτ that are invariant under the action of SO(3) ⋉ R3. Such operators are in correspondence with the End(Vτ) -valued, bi-τ-equivariant, integrable functions on R3 and they form a commutative algebra with the convolution product. We develop the spherical analysis on that algebra, explicitly computing the τ-spherical functions. We first present a set of generators of the algebra of SO(3) ⋉ R3-invariant differential operators non Eτ. We also give an explicit form for the τ-spherical Fourier transform, we deduce an inversion formula and we use it to give a characterization of End(Vτ) -valued, bi-τ-equivariant, functions on R3. Fil: Díaz Martín, Rocío Patricia. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Levstein, Fernando. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We consider R3 as a homogeneous manifold for the action of the motion group given by rotations and translations. For an arbitrary τ∈ SO(3) ^ , let Eτ be the homogeneous vector bundle over R3 associated with τ. An interesting problem consists in studying the set of bounded linear operators over the sections of Eτ that are invariant under the action of SO(3) ⋉ R3. Such operators are in correspondence with the End(Vτ) -valued, bi-τ-equivariant, integrable functions on R3 and they form a commutative algebra with the convolution product. We develop the spherical analysis on that algebra, explicitly computing the τ-spherical functions. We first present a set of generators of the algebra of SO(3) ⋉ R3-invariant differential operators non Eτ. We also give an explicit form for the τ-spherical Fourier transform, we deduce an inversion formula and we use it to give a characterization of End(Vτ) -valued, bi-τ-equivariant, functions on R3. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/89299 Díaz Martín, Rocío Patricia; Levstein, Fernando; Spherical analysis on homogeneous vector bundles of the 3-dimensional euclidean motion group; Springer Wien; Monatshefete Fur Mathematik; 185; 4; 4-2018; 621-649 0026-9255 1436-5081 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/89299 |
identifier_str_mv |
Díaz Martín, Rocío Patricia; Levstein, Fernando; Spherical analysis on homogeneous vector bundles of the 3-dimensional euclidean motion group; Springer Wien; Monatshefete Fur Mathematik; 185; 4; 4-2018; 621-649 0026-9255 1436-5081 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00605-017-1123-1 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00605-017-1123-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Wien |
publisher.none.fl_str_mv |
Springer Wien |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083461431951360 |
score |
12.891075 |