Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina

Autores
Carbajo, Anibal Eduardo; Cardo, María Victoria; Guimarey, Pilar Consuelo; Lizuain, Arturo Andrés; Buyayisqui, María Pía; Varela, Teresa; Utgés, Maria E.; Giovacchini, Carlos; Santini, Maria Soledad
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background. Dengue is a major and rapidly increasing public health problem. In Argentina, the southern extreme of its distribution in the Americas, epidemic transmission takes place during the warm season. Since its re-emergence in 1998 two major outbreaks have occurred, the biggest during 2016. To identify the environmental factors that trigger epidemic events, we analyzed the occurrence and magnitude of dengue outbreaks in time and space at different scales in association with climatic, geographic and demographic variables and number of cases in endemic neighboring countries. Methods. Information on dengue cases was obtained from dengue notifications reported in the National Health Surveillance System. The resulting database was analyzed by Generalized Linear Mixed Models (GLMM) under three methodological approaches to: identify in which years the most important outbreaks occurred in association with environmental variables and propose a risk estimation for future epidemics (temporal approach); characterize which variables explain the occurrence of local outbreaks through time (spatio-temporal approach); and select the environmental drivers of the geographical distribution of dengue positive districts during 2016 (spatial approach). Results. Within the temporal approach, the number of dengue cases country-wide between 2009 and 2016 was positively associated with the number of dengue cases in bordering endemic countries and negatively with the days necessary for transmission (DNT) during the previous autumn in the central region of the country. Annual epidemic intensity in the period between 1999-2016 was associated with DNT during previous autumn and winter. Regarding the spatio-temporal approach, dengue cases within a district were also associated with mild conditions in the previous autumn along with the number of dengue cases in neighboring countries. As for the spatial approach, the best model for the occurrence of two or more dengue cases per district included autumn minimum temperature and human population as fixed factors, and the province as a grouping variable. Explanatory power of all models was high, in the range 57-95%. Discussion. Given the epidemic nature of dengue in Argentina, virus pressure from endemic neighboring countries along with climatic conditions are crucial to explain disease dynamics. In the three methodological approaches, temperature conditions during autumn were best associated with dengue patterns. We propose that mild autumns represent an advantage for mosquito vector populations and that, in temperate regions, this advantage manifests as a larger egg bank from which the adult population will re-emerge in spring. This may constitute a valuable anticipating tool for high transmission risk events.
Fil: Carbajo, Anibal Eduardo. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cardo, María Victoria. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Guimarey, Pilar Consuelo. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; Argentina
Fil: Lizuain, Arturo Andrés. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; Argentina
Fil: Buyayisqui, María Pía. Ministerio de Salud de la Nación; Argentina
Fil: Varela, Teresa. Ministerio de Salud de la Nación; Argentina
Fil: Utgés, Maria E.. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; Argentina
Fil: Giovacchini, Carlos. Ministerio de Salud de la Nación; Argentina
Fil: Santini, Maria Soledad. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
AEDES AEGYPTI
ARBOVIRUS
CLIMATE
DEMOGRAPHY
EPIDEMIOLOGY
PREDICTIVE MODELS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/177225

id CONICETDig_03a6278b3ae2ad70aed164c96198c43e
oai_identifier_str oai:ri.conicet.gov.ar:11336/177225
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Is autumn the key for dengue epidemics in non endemic regions? The case of ArgentinaCarbajo, Anibal EduardoCardo, María VictoriaGuimarey, Pilar ConsueloLizuain, Arturo AndrésBuyayisqui, María PíaVarela, TeresaUtgés, Maria E.Giovacchini, CarlosSantini, Maria SoledadAEDES AEGYPTIARBOVIRUSCLIMATEDEMOGRAPHYEPIDEMIOLOGYPREDICTIVE MODELShttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3Background. Dengue is a major and rapidly increasing public health problem. In Argentina, the southern extreme of its distribution in the Americas, epidemic transmission takes place during the warm season. Since its re-emergence in 1998 two major outbreaks have occurred, the biggest during 2016. To identify the environmental factors that trigger epidemic events, we analyzed the occurrence and magnitude of dengue outbreaks in time and space at different scales in association with climatic, geographic and demographic variables and number of cases in endemic neighboring countries. Methods. Information on dengue cases was obtained from dengue notifications reported in the National Health Surveillance System. The resulting database was analyzed by Generalized Linear Mixed Models (GLMM) under three methodological approaches to: identify in which years the most important outbreaks occurred in association with environmental variables and propose a risk estimation for future epidemics (temporal approach); characterize which variables explain the occurrence of local outbreaks through time (spatio-temporal approach); and select the environmental drivers of the geographical distribution of dengue positive districts during 2016 (spatial approach). Results. Within the temporal approach, the number of dengue cases country-wide between 2009 and 2016 was positively associated with the number of dengue cases in bordering endemic countries and negatively with the days necessary for transmission (DNT) during the previous autumn in the central region of the country. Annual epidemic intensity in the period between 1999-2016 was associated with DNT during previous autumn and winter. Regarding the spatio-temporal approach, dengue cases within a district were also associated with mild conditions in the previous autumn along with the number of dengue cases in neighboring countries. As for the spatial approach, the best model for the occurrence of two or more dengue cases per district included autumn minimum temperature and human population as fixed factors, and the province as a grouping variable. Explanatory power of all models was high, in the range 57-95%. Discussion. Given the epidemic nature of dengue in Argentina, virus pressure from endemic neighboring countries along with climatic conditions are crucial to explain disease dynamics. In the three methodological approaches, temperature conditions during autumn were best associated with dengue patterns. We propose that mild autumns represent an advantage for mosquito vector populations and that, in temperate regions, this advantage manifests as a larger egg bank from which the adult population will re-emerge in spring. This may constitute a valuable anticipating tool for high transmission risk events.Fil: Carbajo, Anibal Eduardo. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cardo, María Victoria. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Guimarey, Pilar Consuelo. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; ArgentinaFil: Lizuain, Arturo Andrés. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; ArgentinaFil: Buyayisqui, María Pía. Ministerio de Salud de la Nación; ArgentinaFil: Varela, Teresa. Ministerio de Salud de la Nación; ArgentinaFil: Utgés, Maria E.. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; ArgentinaFil: Giovacchini, Carlos. Ministerio de Salud de la Nación; ArgentinaFil: Santini, Maria Soledad. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaPeerJ Inc2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/177225Carbajo, Anibal Eduardo; Cardo, María Victoria; Guimarey, Pilar Consuelo; Lizuain, Arturo Andrés; Buyayisqui, María Pía; et al.; Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina; PeerJ Inc; PeerJ; 7; 7-2018; 1-202167-8359CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://peerj.com/articles/5196info:eu-repo/semantics/altIdentifier/doi/10.7717/peerj.5196info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:24:53Zoai:ri.conicet.gov.ar:11336/177225instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:24:53.676CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina
title Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina
spellingShingle Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina
Carbajo, Anibal Eduardo
AEDES AEGYPTI
ARBOVIRUS
CLIMATE
DEMOGRAPHY
EPIDEMIOLOGY
PREDICTIVE MODELS
title_short Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina
title_full Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina
title_fullStr Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina
title_full_unstemmed Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina
title_sort Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina
dc.creator.none.fl_str_mv Carbajo, Anibal Eduardo
Cardo, María Victoria
Guimarey, Pilar Consuelo
Lizuain, Arturo Andrés
Buyayisqui, María Pía
Varela, Teresa
Utgés, Maria E.
Giovacchini, Carlos
Santini, Maria Soledad
author Carbajo, Anibal Eduardo
author_facet Carbajo, Anibal Eduardo
Cardo, María Victoria
Guimarey, Pilar Consuelo
Lizuain, Arturo Andrés
Buyayisqui, María Pía
Varela, Teresa
Utgés, Maria E.
Giovacchini, Carlos
Santini, Maria Soledad
author_role author
author2 Cardo, María Victoria
Guimarey, Pilar Consuelo
Lizuain, Arturo Andrés
Buyayisqui, María Pía
Varela, Teresa
Utgés, Maria E.
Giovacchini, Carlos
Santini, Maria Soledad
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv AEDES AEGYPTI
ARBOVIRUS
CLIMATE
DEMOGRAPHY
EPIDEMIOLOGY
PREDICTIVE MODELS
topic AEDES AEGYPTI
ARBOVIRUS
CLIMATE
DEMOGRAPHY
EPIDEMIOLOGY
PREDICTIVE MODELS
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.3
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Background. Dengue is a major and rapidly increasing public health problem. In Argentina, the southern extreme of its distribution in the Americas, epidemic transmission takes place during the warm season. Since its re-emergence in 1998 two major outbreaks have occurred, the biggest during 2016. To identify the environmental factors that trigger epidemic events, we analyzed the occurrence and magnitude of dengue outbreaks in time and space at different scales in association with climatic, geographic and demographic variables and number of cases in endemic neighboring countries. Methods. Information on dengue cases was obtained from dengue notifications reported in the National Health Surveillance System. The resulting database was analyzed by Generalized Linear Mixed Models (GLMM) under three methodological approaches to: identify in which years the most important outbreaks occurred in association with environmental variables and propose a risk estimation for future epidemics (temporal approach); characterize which variables explain the occurrence of local outbreaks through time (spatio-temporal approach); and select the environmental drivers of the geographical distribution of dengue positive districts during 2016 (spatial approach). Results. Within the temporal approach, the number of dengue cases country-wide between 2009 and 2016 was positively associated with the number of dengue cases in bordering endemic countries and negatively with the days necessary for transmission (DNT) during the previous autumn in the central region of the country. Annual epidemic intensity in the period between 1999-2016 was associated with DNT during previous autumn and winter. Regarding the spatio-temporal approach, dengue cases within a district were also associated with mild conditions in the previous autumn along with the number of dengue cases in neighboring countries. As for the spatial approach, the best model for the occurrence of two or more dengue cases per district included autumn minimum temperature and human population as fixed factors, and the province as a grouping variable. Explanatory power of all models was high, in the range 57-95%. Discussion. Given the epidemic nature of dengue in Argentina, virus pressure from endemic neighboring countries along with climatic conditions are crucial to explain disease dynamics. In the three methodological approaches, temperature conditions during autumn were best associated with dengue patterns. We propose that mild autumns represent an advantage for mosquito vector populations and that, in temperate regions, this advantage manifests as a larger egg bank from which the adult population will re-emerge in spring. This may constitute a valuable anticipating tool for high transmission risk events.
Fil: Carbajo, Anibal Eduardo. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cardo, María Victoria. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Guimarey, Pilar Consuelo. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; Argentina
Fil: Lizuain, Arturo Andrés. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; Argentina
Fil: Buyayisqui, María Pía. Ministerio de Salud de la Nación; Argentina
Fil: Varela, Teresa. Ministerio de Salud de la Nación; Argentina
Fil: Utgés, Maria E.. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; Argentina
Fil: Giovacchini, Carlos. Ministerio de Salud de la Nación; Argentina
Fil: Santini, Maria Soledad. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Background. Dengue is a major and rapidly increasing public health problem. In Argentina, the southern extreme of its distribution in the Americas, epidemic transmission takes place during the warm season. Since its re-emergence in 1998 two major outbreaks have occurred, the biggest during 2016. To identify the environmental factors that trigger epidemic events, we analyzed the occurrence and magnitude of dengue outbreaks in time and space at different scales in association with climatic, geographic and demographic variables and number of cases in endemic neighboring countries. Methods. Information on dengue cases was obtained from dengue notifications reported in the National Health Surveillance System. The resulting database was analyzed by Generalized Linear Mixed Models (GLMM) under three methodological approaches to: identify in which years the most important outbreaks occurred in association with environmental variables and propose a risk estimation for future epidemics (temporal approach); characterize which variables explain the occurrence of local outbreaks through time (spatio-temporal approach); and select the environmental drivers of the geographical distribution of dengue positive districts during 2016 (spatial approach). Results. Within the temporal approach, the number of dengue cases country-wide between 2009 and 2016 was positively associated with the number of dengue cases in bordering endemic countries and negatively with the days necessary for transmission (DNT) during the previous autumn in the central region of the country. Annual epidemic intensity in the period between 1999-2016 was associated with DNT during previous autumn and winter. Regarding the spatio-temporal approach, dengue cases within a district were also associated with mild conditions in the previous autumn along with the number of dengue cases in neighboring countries. As for the spatial approach, the best model for the occurrence of two or more dengue cases per district included autumn minimum temperature and human population as fixed factors, and the province as a grouping variable. Explanatory power of all models was high, in the range 57-95%. Discussion. Given the epidemic nature of dengue in Argentina, virus pressure from endemic neighboring countries along with climatic conditions are crucial to explain disease dynamics. In the three methodological approaches, temperature conditions during autumn were best associated with dengue patterns. We propose that mild autumns represent an advantage for mosquito vector populations and that, in temperate regions, this advantage manifests as a larger egg bank from which the adult population will re-emerge in spring. This may constitute a valuable anticipating tool for high transmission risk events.
publishDate 2018
dc.date.none.fl_str_mv 2018-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/177225
Carbajo, Anibal Eduardo; Cardo, María Victoria; Guimarey, Pilar Consuelo; Lizuain, Arturo Andrés; Buyayisqui, María Pía; et al.; Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina; PeerJ Inc; PeerJ; 7; 7-2018; 1-20
2167-8359
CONICET Digital
CONICET
url http://hdl.handle.net/11336/177225
identifier_str_mv Carbajo, Anibal Eduardo; Cardo, María Victoria; Guimarey, Pilar Consuelo; Lizuain, Arturo Andrés; Buyayisqui, María Pía; et al.; Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina; PeerJ Inc; PeerJ; 7; 7-2018; 1-20
2167-8359
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://peerj.com/articles/5196
info:eu-repo/semantics/altIdentifier/doi/10.7717/peerj.5196
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv PeerJ Inc
publisher.none.fl_str_mv PeerJ Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614246333153280
score 13.070432