Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina
- Autores
- Carbajo, Anibal Eduardo; Cardo, María Victoria; Guimarey, Pilar Consuelo; Lizuain, Arturo Andrés; Buyayisqui, María Pía; Varela, Teresa; Utgés, Maria E.; Giovacchini, Carlos; Santini, Maria Soledad
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background. Dengue is a major and rapidly increasing public health problem. In Argentina, the southern extreme of its distribution in the Americas, epidemic transmission takes place during the warm season. Since its re-emergence in 1998 two major outbreaks have occurred, the biggest during 2016. To identify the environmental factors that trigger epidemic events, we analyzed the occurrence and magnitude of dengue outbreaks in time and space at different scales in association with climatic, geographic and demographic variables and number of cases in endemic neighboring countries. Methods. Information on dengue cases was obtained from dengue notifications reported in the National Health Surveillance System. The resulting database was analyzed by Generalized Linear Mixed Models (GLMM) under three methodological approaches to: identify in which years the most important outbreaks occurred in association with environmental variables and propose a risk estimation for future epidemics (temporal approach); characterize which variables explain the occurrence of local outbreaks through time (spatio-temporal approach); and select the environmental drivers of the geographical distribution of dengue positive districts during 2016 (spatial approach). Results. Within the temporal approach, the number of dengue cases country-wide between 2009 and 2016 was positively associated with the number of dengue cases in bordering endemic countries and negatively with the days necessary for transmission (DNT) during the previous autumn in the central region of the country. Annual epidemic intensity in the period between 1999-2016 was associated with DNT during previous autumn and winter. Regarding the spatio-temporal approach, dengue cases within a district were also associated with mild conditions in the previous autumn along with the number of dengue cases in neighboring countries. As for the spatial approach, the best model for the occurrence of two or more dengue cases per district included autumn minimum temperature and human population as fixed factors, and the province as a grouping variable. Explanatory power of all models was high, in the range 57-95%. Discussion. Given the epidemic nature of dengue in Argentina, virus pressure from endemic neighboring countries along with climatic conditions are crucial to explain disease dynamics. In the three methodological approaches, temperature conditions during autumn were best associated with dengue patterns. We propose that mild autumns represent an advantage for mosquito vector populations and that, in temperate regions, this advantage manifests as a larger egg bank from which the adult population will re-emerge in spring. This may constitute a valuable anticipating tool for high transmission risk events.
Fil: Carbajo, Anibal Eduardo. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cardo, María Victoria. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Guimarey, Pilar Consuelo. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; Argentina
Fil: Lizuain, Arturo Andrés. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; Argentina
Fil: Buyayisqui, María Pía. Ministerio de Salud de la Nación; Argentina
Fil: Varela, Teresa. Ministerio de Salud de la Nación; Argentina
Fil: Utgés, Maria E.. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; Argentina
Fil: Giovacchini, Carlos. Ministerio de Salud de la Nación; Argentina
Fil: Santini, Maria Soledad. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
AEDES AEGYPTI
ARBOVIRUS
CLIMATE
DEMOGRAPHY
EPIDEMIOLOGY
PREDICTIVE MODELS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/177225
Ver los metadatos del registro completo
id |
CONICETDig_03a6278b3ae2ad70aed164c96198c43e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/177225 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Is autumn the key for dengue epidemics in non endemic regions? The case of ArgentinaCarbajo, Anibal EduardoCardo, María VictoriaGuimarey, Pilar ConsueloLizuain, Arturo AndrésBuyayisqui, María PíaVarela, TeresaUtgés, Maria E.Giovacchini, CarlosSantini, Maria SoledadAEDES AEGYPTIARBOVIRUSCLIMATEDEMOGRAPHYEPIDEMIOLOGYPREDICTIVE MODELShttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3Background. Dengue is a major and rapidly increasing public health problem. In Argentina, the southern extreme of its distribution in the Americas, epidemic transmission takes place during the warm season. Since its re-emergence in 1998 two major outbreaks have occurred, the biggest during 2016. To identify the environmental factors that trigger epidemic events, we analyzed the occurrence and magnitude of dengue outbreaks in time and space at different scales in association with climatic, geographic and demographic variables and number of cases in endemic neighboring countries. Methods. Information on dengue cases was obtained from dengue notifications reported in the National Health Surveillance System. The resulting database was analyzed by Generalized Linear Mixed Models (GLMM) under three methodological approaches to: identify in which years the most important outbreaks occurred in association with environmental variables and propose a risk estimation for future epidemics (temporal approach); characterize which variables explain the occurrence of local outbreaks through time (spatio-temporal approach); and select the environmental drivers of the geographical distribution of dengue positive districts during 2016 (spatial approach). Results. Within the temporal approach, the number of dengue cases country-wide between 2009 and 2016 was positively associated with the number of dengue cases in bordering endemic countries and negatively with the days necessary for transmission (DNT) during the previous autumn in the central region of the country. Annual epidemic intensity in the period between 1999-2016 was associated with DNT during previous autumn and winter. Regarding the spatio-temporal approach, dengue cases within a district were also associated with mild conditions in the previous autumn along with the number of dengue cases in neighboring countries. As for the spatial approach, the best model for the occurrence of two or more dengue cases per district included autumn minimum temperature and human population as fixed factors, and the province as a grouping variable. Explanatory power of all models was high, in the range 57-95%. Discussion. Given the epidemic nature of dengue in Argentina, virus pressure from endemic neighboring countries along with climatic conditions are crucial to explain disease dynamics. In the three methodological approaches, temperature conditions during autumn were best associated with dengue patterns. We propose that mild autumns represent an advantage for mosquito vector populations and that, in temperate regions, this advantage manifests as a larger egg bank from which the adult population will re-emerge in spring. This may constitute a valuable anticipating tool for high transmission risk events.Fil: Carbajo, Anibal Eduardo. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cardo, María Victoria. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Guimarey, Pilar Consuelo. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; ArgentinaFil: Lizuain, Arturo Andrés. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; ArgentinaFil: Buyayisqui, María Pía. Ministerio de Salud de la Nación; ArgentinaFil: Varela, Teresa. Ministerio de Salud de la Nación; ArgentinaFil: Utgés, Maria E.. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; ArgentinaFil: Giovacchini, Carlos. Ministerio de Salud de la Nación; ArgentinaFil: Santini, Maria Soledad. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaPeerJ Inc2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/177225Carbajo, Anibal Eduardo; Cardo, María Victoria; Guimarey, Pilar Consuelo; Lizuain, Arturo Andrés; Buyayisqui, María Pía; et al.; Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina; PeerJ Inc; PeerJ; 7; 7-2018; 1-202167-8359CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://peerj.com/articles/5196info:eu-repo/semantics/altIdentifier/doi/10.7717/peerj.5196info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:24:53Zoai:ri.conicet.gov.ar:11336/177225instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:24:53.676CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina |
title |
Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina |
spellingShingle |
Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina Carbajo, Anibal Eduardo AEDES AEGYPTI ARBOVIRUS CLIMATE DEMOGRAPHY EPIDEMIOLOGY PREDICTIVE MODELS |
title_short |
Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina |
title_full |
Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina |
title_fullStr |
Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina |
title_full_unstemmed |
Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina |
title_sort |
Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina |
dc.creator.none.fl_str_mv |
Carbajo, Anibal Eduardo Cardo, María Victoria Guimarey, Pilar Consuelo Lizuain, Arturo Andrés Buyayisqui, María Pía Varela, Teresa Utgés, Maria E. Giovacchini, Carlos Santini, Maria Soledad |
author |
Carbajo, Anibal Eduardo |
author_facet |
Carbajo, Anibal Eduardo Cardo, María Victoria Guimarey, Pilar Consuelo Lizuain, Arturo Andrés Buyayisqui, María Pía Varela, Teresa Utgés, Maria E. Giovacchini, Carlos Santini, Maria Soledad |
author_role |
author |
author2 |
Cardo, María Victoria Guimarey, Pilar Consuelo Lizuain, Arturo Andrés Buyayisqui, María Pía Varela, Teresa Utgés, Maria E. Giovacchini, Carlos Santini, Maria Soledad |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
AEDES AEGYPTI ARBOVIRUS CLIMATE DEMOGRAPHY EPIDEMIOLOGY PREDICTIVE MODELS |
topic |
AEDES AEGYPTI ARBOVIRUS CLIMATE DEMOGRAPHY EPIDEMIOLOGY PREDICTIVE MODELS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.3 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Background. Dengue is a major and rapidly increasing public health problem. In Argentina, the southern extreme of its distribution in the Americas, epidemic transmission takes place during the warm season. Since its re-emergence in 1998 two major outbreaks have occurred, the biggest during 2016. To identify the environmental factors that trigger epidemic events, we analyzed the occurrence and magnitude of dengue outbreaks in time and space at different scales in association with climatic, geographic and demographic variables and number of cases in endemic neighboring countries. Methods. Information on dengue cases was obtained from dengue notifications reported in the National Health Surveillance System. The resulting database was analyzed by Generalized Linear Mixed Models (GLMM) under three methodological approaches to: identify in which years the most important outbreaks occurred in association with environmental variables and propose a risk estimation for future epidemics (temporal approach); characterize which variables explain the occurrence of local outbreaks through time (spatio-temporal approach); and select the environmental drivers of the geographical distribution of dengue positive districts during 2016 (spatial approach). Results. Within the temporal approach, the number of dengue cases country-wide between 2009 and 2016 was positively associated with the number of dengue cases in bordering endemic countries and negatively with the days necessary for transmission (DNT) during the previous autumn in the central region of the country. Annual epidemic intensity in the period between 1999-2016 was associated with DNT during previous autumn and winter. Regarding the spatio-temporal approach, dengue cases within a district were also associated with mild conditions in the previous autumn along with the number of dengue cases in neighboring countries. As for the spatial approach, the best model for the occurrence of two or more dengue cases per district included autumn minimum temperature and human population as fixed factors, and the province as a grouping variable. Explanatory power of all models was high, in the range 57-95%. Discussion. Given the epidemic nature of dengue in Argentina, virus pressure from endemic neighboring countries along with climatic conditions are crucial to explain disease dynamics. In the three methodological approaches, temperature conditions during autumn were best associated with dengue patterns. We propose that mild autumns represent an advantage for mosquito vector populations and that, in temperate regions, this advantage manifests as a larger egg bank from which the adult population will re-emerge in spring. This may constitute a valuable anticipating tool for high transmission risk events. Fil: Carbajo, Anibal Eduardo. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Cardo, María Victoria. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Guimarey, Pilar Consuelo. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; Argentina Fil: Lizuain, Arturo Andrés. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; Argentina Fil: Buyayisqui, María Pía. Ministerio de Salud de la Nación; Argentina Fil: Varela, Teresa. Ministerio de Salud de la Nación; Argentina Fil: Utgés, Maria E.. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; Argentina Fil: Giovacchini, Carlos. Ministerio de Salud de la Nación; Argentina Fil: Santini, Maria Soledad. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Background. Dengue is a major and rapidly increasing public health problem. In Argentina, the southern extreme of its distribution in the Americas, epidemic transmission takes place during the warm season. Since its re-emergence in 1998 two major outbreaks have occurred, the biggest during 2016. To identify the environmental factors that trigger epidemic events, we analyzed the occurrence and magnitude of dengue outbreaks in time and space at different scales in association with climatic, geographic and demographic variables and number of cases in endemic neighboring countries. Methods. Information on dengue cases was obtained from dengue notifications reported in the National Health Surveillance System. The resulting database was analyzed by Generalized Linear Mixed Models (GLMM) under three methodological approaches to: identify in which years the most important outbreaks occurred in association with environmental variables and propose a risk estimation for future epidemics (temporal approach); characterize which variables explain the occurrence of local outbreaks through time (spatio-temporal approach); and select the environmental drivers of the geographical distribution of dengue positive districts during 2016 (spatial approach). Results. Within the temporal approach, the number of dengue cases country-wide between 2009 and 2016 was positively associated with the number of dengue cases in bordering endemic countries and negatively with the days necessary for transmission (DNT) during the previous autumn in the central region of the country. Annual epidemic intensity in the period between 1999-2016 was associated with DNT during previous autumn and winter. Regarding the spatio-temporal approach, dengue cases within a district were also associated with mild conditions in the previous autumn along with the number of dengue cases in neighboring countries. As for the spatial approach, the best model for the occurrence of two or more dengue cases per district included autumn minimum temperature and human population as fixed factors, and the province as a grouping variable. Explanatory power of all models was high, in the range 57-95%. Discussion. Given the epidemic nature of dengue in Argentina, virus pressure from endemic neighboring countries along with climatic conditions are crucial to explain disease dynamics. In the three methodological approaches, temperature conditions during autumn were best associated with dengue patterns. We propose that mild autumns represent an advantage for mosquito vector populations and that, in temperate regions, this advantage manifests as a larger egg bank from which the adult population will re-emerge in spring. This may constitute a valuable anticipating tool for high transmission risk events. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/177225 Carbajo, Anibal Eduardo; Cardo, María Victoria; Guimarey, Pilar Consuelo; Lizuain, Arturo Andrés; Buyayisqui, María Pía; et al.; Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina; PeerJ Inc; PeerJ; 7; 7-2018; 1-20 2167-8359 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/177225 |
identifier_str_mv |
Carbajo, Anibal Eduardo; Cardo, María Victoria; Guimarey, Pilar Consuelo; Lizuain, Arturo Andrés; Buyayisqui, María Pía; et al.; Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina; PeerJ Inc; PeerJ; 7; 7-2018; 1-20 2167-8359 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://peerj.com/articles/5196 info:eu-repo/semantics/altIdentifier/doi/10.7717/peerj.5196 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
PeerJ Inc |
publisher.none.fl_str_mv |
PeerJ Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614246333153280 |
score |
13.070432 |