Generalized conditional entropy in bipartite quantum systems

Autores
Gigena, Nicolás Alejandro; Rossignoli, Raúl Dante
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We analyze, for a general concave entropic form, the associated conditional entropy of a quantum system A+B, obtained as a result of a local measurement on one of the systems (B). This quantity is a measure of the average mixedness of A after such measurement, and its minimum over all local measurements is shown to be the associated entanglement of formation between A and a purifying third systemC. In the case of the vonNeumann entropy, thisminimum determines also the quantum discord. For classically correlated states and mixtures of a pure state with the maximally mixed state, we show that the minimizing measurement can be determined analytically and is universal, i.e., the same for all concave forms. While these properties no longer hold for general states, we also show that in the special case of the linear entropy, an explicit expression for the associated conditional entropy can be obtained, whose minimum among projective measurements in a general qudit?qubit state can be determined analytically, in terms of the largest eigenvalue of a simple 3×3 correlation matrix. Such minimum determines the maximum conditional purity of A, and the associated minimizing measurement is shown to be also universal in the vicinity of maximal mixedness. Results for X states, including typical reduced states of spin pairs in XY chains at weak and strong transverse fields, are also provided and indicate that the measurements minimizing the von Neumann and linear conditional entropies are typically coincident in these states, being determined essentially by the main correlation. They can differ, however, substantially from that minimizing the geometric discord.
Fil: Gigena, Nicolás Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Rossignoli, Raúl Dante. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Materia
Entropy
Conditional
Entanglement
Discord
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/101750

id CONICETDig_b0c431e20529042c5ae7e5dee965a518
oai_identifier_str oai:ri.conicet.gov.ar:11336/101750
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Generalized conditional entropy in bipartite quantum systemsGigena, Nicolás AlejandroRossignoli, Raúl DanteEntropyConditionalEntanglementDiscordhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We analyze, for a general concave entropic form, the associated conditional entropy of a quantum system A+B, obtained as a result of a local measurement on one of the systems (B). This quantity is a measure of the average mixedness of A after such measurement, and its minimum over all local measurements is shown to be the associated entanglement of formation between A and a purifying third systemC. In the case of the vonNeumann entropy, thisminimum determines also the quantum discord. For classically correlated states and mixtures of a pure state with the maximally mixed state, we show that the minimizing measurement can be determined analytically and is universal, i.e., the same for all concave forms. While these properties no longer hold for general states, we also show that in the special case of the linear entropy, an explicit expression for the associated conditional entropy can be obtained, whose minimum among projective measurements in a general qudit?qubit state can be determined analytically, in terms of the largest eigenvalue of a simple 3×3 correlation matrix. Such minimum determines the maximum conditional purity of A, and the associated minimizing measurement is shown to be also universal in the vicinity of maximal mixedness. Results for X states, including typical reduced states of spin pairs in XY chains at weak and strong transverse fields, are also provided and indicate that the measurements minimizing the von Neumann and linear conditional entropies are typically coincident in these states, being determined essentially by the main correlation. They can differ, however, substantially from that minimizing the geometric discord.Fil: Gigena, Nicolás Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Rossignoli, Raúl Dante. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaIOP Publishing2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/101750Gigena, Nicolás Alejandro; Rossignoli, Raúl Dante; Generalized conditional entropy in bipartite quantum systems; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 47; 5302; 1-2014; 1530201-15302181751-8113CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1751-8121/47/1/015302/articleinfo:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/47/1/015302info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:14Zoai:ri.conicet.gov.ar:11336/101750instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:14.983CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Generalized conditional entropy in bipartite quantum systems
title Generalized conditional entropy in bipartite quantum systems
spellingShingle Generalized conditional entropy in bipartite quantum systems
Gigena, Nicolás Alejandro
Entropy
Conditional
Entanglement
Discord
title_short Generalized conditional entropy in bipartite quantum systems
title_full Generalized conditional entropy in bipartite quantum systems
title_fullStr Generalized conditional entropy in bipartite quantum systems
title_full_unstemmed Generalized conditional entropy in bipartite quantum systems
title_sort Generalized conditional entropy in bipartite quantum systems
dc.creator.none.fl_str_mv Gigena, Nicolás Alejandro
Rossignoli, Raúl Dante
author Gigena, Nicolás Alejandro
author_facet Gigena, Nicolás Alejandro
Rossignoli, Raúl Dante
author_role author
author2 Rossignoli, Raúl Dante
author2_role author
dc.subject.none.fl_str_mv Entropy
Conditional
Entanglement
Discord
topic Entropy
Conditional
Entanglement
Discord
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We analyze, for a general concave entropic form, the associated conditional entropy of a quantum system A+B, obtained as a result of a local measurement on one of the systems (B). This quantity is a measure of the average mixedness of A after such measurement, and its minimum over all local measurements is shown to be the associated entanglement of formation between A and a purifying third systemC. In the case of the vonNeumann entropy, thisminimum determines also the quantum discord. For classically correlated states and mixtures of a pure state with the maximally mixed state, we show that the minimizing measurement can be determined analytically and is universal, i.e., the same for all concave forms. While these properties no longer hold for general states, we also show that in the special case of the linear entropy, an explicit expression for the associated conditional entropy can be obtained, whose minimum among projective measurements in a general qudit?qubit state can be determined analytically, in terms of the largest eigenvalue of a simple 3×3 correlation matrix. Such minimum determines the maximum conditional purity of A, and the associated minimizing measurement is shown to be also universal in the vicinity of maximal mixedness. Results for X states, including typical reduced states of spin pairs in XY chains at weak and strong transverse fields, are also provided and indicate that the measurements minimizing the von Neumann and linear conditional entropies are typically coincident in these states, being determined essentially by the main correlation. They can differ, however, substantially from that minimizing the geometric discord.
Fil: Gigena, Nicolás Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Rossignoli, Raúl Dante. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
description We analyze, for a general concave entropic form, the associated conditional entropy of a quantum system A+B, obtained as a result of a local measurement on one of the systems (B). This quantity is a measure of the average mixedness of A after such measurement, and its minimum over all local measurements is shown to be the associated entanglement of formation between A and a purifying third systemC. In the case of the vonNeumann entropy, thisminimum determines also the quantum discord. For classically correlated states and mixtures of a pure state with the maximally mixed state, we show that the minimizing measurement can be determined analytically and is universal, i.e., the same for all concave forms. While these properties no longer hold for general states, we also show that in the special case of the linear entropy, an explicit expression for the associated conditional entropy can be obtained, whose minimum among projective measurements in a general qudit?qubit state can be determined analytically, in terms of the largest eigenvalue of a simple 3×3 correlation matrix. Such minimum determines the maximum conditional purity of A, and the associated minimizing measurement is shown to be also universal in the vicinity of maximal mixedness. Results for X states, including typical reduced states of spin pairs in XY chains at weak and strong transverse fields, are also provided and indicate that the measurements minimizing the von Neumann and linear conditional entropies are typically coincident in these states, being determined essentially by the main correlation. They can differ, however, substantially from that minimizing the geometric discord.
publishDate 2014
dc.date.none.fl_str_mv 2014-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/101750
Gigena, Nicolás Alejandro; Rossignoli, Raúl Dante; Generalized conditional entropy in bipartite quantum systems; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 47; 5302; 1-2014; 1530201-1530218
1751-8113
CONICET Digital
CONICET
url http://hdl.handle.net/11336/101750
identifier_str_mv Gigena, Nicolás Alejandro; Rossignoli, Raúl Dante; Generalized conditional entropy in bipartite quantum systems; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 47; 5302; 1-2014; 1530201-1530218
1751-8113
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1751-8121/47/1/015302/article
info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/47/1/015302
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269790696112128
score 13.13397