Geometric multigrid methods on structured triangular grids for incompressible Navier-Stokes equations at low Reynolds numbers

Autores
Gaspar, F. J.; Rodrigo, C.; Heidenreich, Elvio
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión enviada
Descripción
The main purpose of this work is the efficient implementation of a multigrid algorithmfor solving Navier-Stokes problems at low Reynolds numbers in different triangular geometries. In particular, a finite element formulation of the Navier-Stokes equations, using quadratic finiteelements for the velocities and linear finite elements to approximate the pressure, is used to solvethe problem of flow in a triangular cavity, driven by the uniform motion of one of its side walls. Anappropriate multigrid method for this discretization of Navier-Stokes equations is designed, basedon a Vanka type smoother. Moreover, the data structure used allows an efficient stencil-basedimplementation of the method, which permits us to perform simulations with a large number ofunknowns with low memory consumption and a relatively low computational cost.
Materia
Ingenierías y Tecnologías
Multigrid methods
Navier-Stokes equations
Vanka smoother
Cavity problem
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/5461

id CICBA_f8d342dd47c7f9458bb1c1cabef977d4
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/5461
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Geometric multigrid methods on structured triangular grids for incompressible Navier-Stokes equations at low Reynolds numbersGaspar, F. J.Rodrigo, C.Heidenreich, ElvioIngenierías y TecnologíasMultigrid methodsNavier-Stokes equationsVanka smootherCavity problemThe main purpose of this work is the efficient implementation of a multigrid algorithmfor solving Navier-Stokes problems at low Reynolds numbers in different triangular geometries. In particular, a finite element formulation of the Navier-Stokes equations, using quadratic finiteelements for the velocities and linear finite elements to approximate the pressure, is used to solvethe problem of flow in a triangular cavity, driven by the uniform motion of one of its side walls. Anappropriate multigrid method for this discretization of Navier-Stokes equations is designed, basedon a Vanka type smoother. Moreover, the data structure used allows an efficient stencil-basedimplementation of the method, which permits us to perform simulations with a large number ofunknowns with low memory consumption and a relatively low computational cost.2014-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/5461enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:40:18Zoai:digital.cic.gba.gob.ar:11746/5461Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:40:18.394CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Geometric multigrid methods on structured triangular grids for incompressible Navier-Stokes equations at low Reynolds numbers
title Geometric multigrid methods on structured triangular grids for incompressible Navier-Stokes equations at low Reynolds numbers
spellingShingle Geometric multigrid methods on structured triangular grids for incompressible Navier-Stokes equations at low Reynolds numbers
Gaspar, F. J.
Ingenierías y Tecnologías
Multigrid methods
Navier-Stokes equations
Vanka smoother
Cavity problem
title_short Geometric multigrid methods on structured triangular grids for incompressible Navier-Stokes equations at low Reynolds numbers
title_full Geometric multigrid methods on structured triangular grids for incompressible Navier-Stokes equations at low Reynolds numbers
title_fullStr Geometric multigrid methods on structured triangular grids for incompressible Navier-Stokes equations at low Reynolds numbers
title_full_unstemmed Geometric multigrid methods on structured triangular grids for incompressible Navier-Stokes equations at low Reynolds numbers
title_sort Geometric multigrid methods on structured triangular grids for incompressible Navier-Stokes equations at low Reynolds numbers
dc.creator.none.fl_str_mv Gaspar, F. J.
Rodrigo, C.
Heidenreich, Elvio
author Gaspar, F. J.
author_facet Gaspar, F. J.
Rodrigo, C.
Heidenreich, Elvio
author_role author
author2 Rodrigo, C.
Heidenreich, Elvio
author2_role author
author
dc.subject.none.fl_str_mv Ingenierías y Tecnologías
Multigrid methods
Navier-Stokes equations
Vanka smoother
Cavity problem
topic Ingenierías y Tecnologías
Multigrid methods
Navier-Stokes equations
Vanka smoother
Cavity problem
dc.description.none.fl_txt_mv The main purpose of this work is the efficient implementation of a multigrid algorithmfor solving Navier-Stokes problems at low Reynolds numbers in different triangular geometries. In particular, a finite element formulation of the Navier-Stokes equations, using quadratic finiteelements for the velocities and linear finite elements to approximate the pressure, is used to solvethe problem of flow in a triangular cavity, driven by the uniform motion of one of its side walls. Anappropriate multigrid method for this discretization of Navier-Stokes equations is designed, basedon a Vanka type smoother. Moreover, the data structure used allows an efficient stencil-basedimplementation of the method, which permits us to perform simulations with a large number ofunknowns with low memory consumption and a relatively low computational cost.
description The main purpose of this work is the efficient implementation of a multigrid algorithmfor solving Navier-Stokes problems at low Reynolds numbers in different triangular geometries. In particular, a finite element formulation of the Navier-Stokes equations, using quadratic finiteelements for the velocities and linear finite elements to approximate the pressure, is used to solvethe problem of flow in a triangular cavity, driven by the uniform motion of one of its side walls. Anappropriate multigrid method for this discretization of Navier-Stokes equations is designed, basedon a Vanka type smoother. Moreover, the data structure used allows an efficient stencil-basedimplementation of the method, which permits us to perform simulations with a large number ofunknowns with low memory consumption and a relatively low computational cost.
publishDate 2014
dc.date.none.fl_str_mv 2014-03-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/submittedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str submittedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/5461
url https://digital.cic.gba.gob.ar/handle/11746/5461
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1844618615098179584
score 13.070432