Three regularization models of the Navier-Stokes equations
- Autores
- Graham, J.P.; Holm, D.D.; Mininni, P.D.; Pouquet, A.
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We determine how the differences in the treatment of the subfilter-scale physics affect the properties of the flow for three closely related regularizations of Navier-Stokes. The consequences on the applicability of the regularizations as subgrid-scale (SGS) models are also shown by examining their effects on superfilter-scale properties. Numerical solutions of the Clark-α model are compared to two previously employed regularizations, the Lagrangian-averaged Navier-Stokes α-model (LANS-α) and Leray-α, albeit at significantly higher Reynolds number than previous studies, namely, Re≈3300, Taylor Reynolds number of Re≈790, and to a direct numerical simulation (DNS) of the Navier-Stokes equations. We derive the de Kármán-Howarth equation for both the Clark-α and Leray-α models. We confirm one of two possible scalings resulting from this equation for Clark-α as well as its associated k-1 energy spectrum. At subfilter scales, Clark-α possesses similar total dissipation and characteristic time to reach a statistical turbulent steady state as Navier-Stokes, but exhibits greater intermittency. As a SGS model, Clark-α reproduces the large-scale energy spectrum and intermittency properties of the DNS. For the Leray-α model, increasing the filter width α decreases the nonlinearity and, hence, the effective Reynolds number is substantially decreased. Therefore, even for the smallest value of α studied Leray-α was inadequate as a SGS model. The LANS-α energy spectrum ∼k1, consistent with its so-called "rigid bodies," precludes a reproduction of the large-scale energy spectrum of the DNS at high Re while achieving a large reduction in numerical resolution. We find, however, that this same feature reduces its intermittency compared to Clark-α (which shares a similar de Kármán-Howarth equation). Clark-α is found to be the best approximation for reproducing the total dissipation rate and the energy spectrum at scales larger than α, whereas high-order intermittency properties for larger values of α are best reproduced by LANS-α. © 2008 American Institute of Physics.
Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Phys. Fluids 2008;20(3)
- Materia
-
Approximation theory
Direct numerical simulation
Mathematical models
Navier Stokes equations
Reynolds number
Energy spectrum
Subfilter-scale physics
Subgrid-scale (SGS) models
Flow of fluids
Approximation theory
Direct numerical simulation
Flow of fluids
Mathematical models
Navier Stokes equations
Reynolds number - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_10706631_v20_n3_p_Graham
Ver los metadatos del registro completo
id |
BDUBAFCEN_4654c0a861b8713197cf0e54fe77d0ca |
---|---|
oai_identifier_str |
paperaa:paper_10706631_v20_n3_p_Graham |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Three regularization models of the Navier-Stokes equationsGraham, J.P.Holm, D.D.Mininni, P.D.Pouquet, A.Approximation theoryDirect numerical simulationMathematical modelsNavier Stokes equationsReynolds numberEnergy spectrumSubfilter-scale physicsSubgrid-scale (SGS) modelsFlow of fluidsApproximation theoryDirect numerical simulationFlow of fluidsMathematical modelsNavier Stokes equationsReynolds numberWe determine how the differences in the treatment of the subfilter-scale physics affect the properties of the flow for three closely related regularizations of Navier-Stokes. The consequences on the applicability of the regularizations as subgrid-scale (SGS) models are also shown by examining their effects on superfilter-scale properties. Numerical solutions of the Clark-α model are compared to two previously employed regularizations, the Lagrangian-averaged Navier-Stokes α-model (LANS-α) and Leray-α, albeit at significantly higher Reynolds number than previous studies, namely, Re≈3300, Taylor Reynolds number of Re≈790, and to a direct numerical simulation (DNS) of the Navier-Stokes equations. We derive the de Kármán-Howarth equation for both the Clark-α and Leray-α models. We confirm one of two possible scalings resulting from this equation for Clark-α as well as its associated k-1 energy spectrum. At subfilter scales, Clark-α possesses similar total dissipation and characteristic time to reach a statistical turbulent steady state as Navier-Stokes, but exhibits greater intermittency. As a SGS model, Clark-α reproduces the large-scale energy spectrum and intermittency properties of the DNS. For the Leray-α model, increasing the filter width α decreases the nonlinearity and, hence, the effective Reynolds number is substantially decreased. Therefore, even for the smallest value of α studied Leray-α was inadequate as a SGS model. The LANS-α energy spectrum ∼k1, consistent with its so-called "rigid bodies," precludes a reproduction of the large-scale energy spectrum of the DNS at high Re while achieving a large reduction in numerical resolution. We find, however, that this same feature reduces its intermittency compared to Clark-α (which shares a similar de Kármán-Howarth equation). Clark-α is found to be the best approximation for reproducing the total dissipation rate and the energy spectrum at scales larger than α, whereas high-order intermittency properties for larger values of α are best reproduced by LANS-α. © 2008 American Institute of Physics.Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_10706631_v20_n3_p_GrahamPhys. Fluids 2008;20(3)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:06Zpaperaa:paper_10706631_v20_n3_p_GrahamInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:07.628Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Three regularization models of the Navier-Stokes equations |
title |
Three regularization models of the Navier-Stokes equations |
spellingShingle |
Three regularization models of the Navier-Stokes equations Graham, J.P. Approximation theory Direct numerical simulation Mathematical models Navier Stokes equations Reynolds number Energy spectrum Subfilter-scale physics Subgrid-scale (SGS) models Flow of fluids Approximation theory Direct numerical simulation Flow of fluids Mathematical models Navier Stokes equations Reynolds number |
title_short |
Three regularization models of the Navier-Stokes equations |
title_full |
Three regularization models of the Navier-Stokes equations |
title_fullStr |
Three regularization models of the Navier-Stokes equations |
title_full_unstemmed |
Three regularization models of the Navier-Stokes equations |
title_sort |
Three regularization models of the Navier-Stokes equations |
dc.creator.none.fl_str_mv |
Graham, J.P. Holm, D.D. Mininni, P.D. Pouquet, A. |
author |
Graham, J.P. |
author_facet |
Graham, J.P. Holm, D.D. Mininni, P.D. Pouquet, A. |
author_role |
author |
author2 |
Holm, D.D. Mininni, P.D. Pouquet, A. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Approximation theory Direct numerical simulation Mathematical models Navier Stokes equations Reynolds number Energy spectrum Subfilter-scale physics Subgrid-scale (SGS) models Flow of fluids Approximation theory Direct numerical simulation Flow of fluids Mathematical models Navier Stokes equations Reynolds number |
topic |
Approximation theory Direct numerical simulation Mathematical models Navier Stokes equations Reynolds number Energy spectrum Subfilter-scale physics Subgrid-scale (SGS) models Flow of fluids Approximation theory Direct numerical simulation Flow of fluids Mathematical models Navier Stokes equations Reynolds number |
dc.description.none.fl_txt_mv |
We determine how the differences in the treatment of the subfilter-scale physics affect the properties of the flow for three closely related regularizations of Navier-Stokes. The consequences on the applicability of the regularizations as subgrid-scale (SGS) models are also shown by examining their effects on superfilter-scale properties. Numerical solutions of the Clark-α model are compared to two previously employed regularizations, the Lagrangian-averaged Navier-Stokes α-model (LANS-α) and Leray-α, albeit at significantly higher Reynolds number than previous studies, namely, Re≈3300, Taylor Reynolds number of Re≈790, and to a direct numerical simulation (DNS) of the Navier-Stokes equations. We derive the de Kármán-Howarth equation for both the Clark-α and Leray-α models. We confirm one of two possible scalings resulting from this equation for Clark-α as well as its associated k-1 energy spectrum. At subfilter scales, Clark-α possesses similar total dissipation and characteristic time to reach a statistical turbulent steady state as Navier-Stokes, but exhibits greater intermittency. As a SGS model, Clark-α reproduces the large-scale energy spectrum and intermittency properties of the DNS. For the Leray-α model, increasing the filter width α decreases the nonlinearity and, hence, the effective Reynolds number is substantially decreased. Therefore, even for the smallest value of α studied Leray-α was inadequate as a SGS model. The LANS-α energy spectrum ∼k1, consistent with its so-called "rigid bodies," precludes a reproduction of the large-scale energy spectrum of the DNS at high Re while achieving a large reduction in numerical resolution. We find, however, that this same feature reduces its intermittency compared to Clark-α (which shares a similar de Kármán-Howarth equation). Clark-α is found to be the best approximation for reproducing the total dissipation rate and the energy spectrum at scales larger than α, whereas high-order intermittency properties for larger values of α are best reproduced by LANS-α. © 2008 American Institute of Physics. Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We determine how the differences in the treatment of the subfilter-scale physics affect the properties of the flow for three closely related regularizations of Navier-Stokes. The consequences on the applicability of the regularizations as subgrid-scale (SGS) models are also shown by examining their effects on superfilter-scale properties. Numerical solutions of the Clark-α model are compared to two previously employed regularizations, the Lagrangian-averaged Navier-Stokes α-model (LANS-α) and Leray-α, albeit at significantly higher Reynolds number than previous studies, namely, Re≈3300, Taylor Reynolds number of Re≈790, and to a direct numerical simulation (DNS) of the Navier-Stokes equations. We derive the de Kármán-Howarth equation for both the Clark-α and Leray-α models. We confirm one of two possible scalings resulting from this equation for Clark-α as well as its associated k-1 energy spectrum. At subfilter scales, Clark-α possesses similar total dissipation and characteristic time to reach a statistical turbulent steady state as Navier-Stokes, but exhibits greater intermittency. As a SGS model, Clark-α reproduces the large-scale energy spectrum and intermittency properties of the DNS. For the Leray-α model, increasing the filter width α decreases the nonlinearity and, hence, the effective Reynolds number is substantially decreased. Therefore, even for the smallest value of α studied Leray-α was inadequate as a SGS model. The LANS-α energy spectrum ∼k1, consistent with its so-called "rigid bodies," precludes a reproduction of the large-scale energy spectrum of the DNS at high Re while achieving a large reduction in numerical resolution. We find, however, that this same feature reduces its intermittency compared to Clark-α (which shares a similar de Kármán-Howarth equation). Clark-α is found to be the best approximation for reproducing the total dissipation rate and the energy spectrum at scales larger than α, whereas high-order intermittency properties for larger values of α are best reproduced by LANS-α. © 2008 American Institute of Physics. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_10706631_v20_n3_p_Graham |
url |
http://hdl.handle.net/20.500.12110/paper_10706631_v20_n3_p_Graham |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Phys. Fluids 2008;20(3) reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618739879772160 |
score |
13.070432 |