Laplace Form Of Navier-Stokes Equations: A Safe Path Or A Wrong Way?
- Autores
- Limache, Alejandro Cesar; Idelsohn, Sergio Rodolfo
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Navier-Stokes Equations written in Laplace form are often the departure point for the simulation of viscous newtonian flows and some studies of numerical stability. Researchers may not be fully aware that the “physical traction boundary conditions” are not the “natural boundary conditions” of the Laplace form of the Navier-Stokes Equations. This is not a problem per se, as long as one manages to rigurously incorporate the physical boundary conditions into the formulation. However, we have discovered that if some seemenly harmless assumptions are made, like using pseudo-tractions (i.e the natural boundary conditions of the Laplace form) or neglecting viscous terms on the free-surfaces, the resulting formulation violates a basic axiom of continuum mechanics: the principle of objectivity. In the present article we give an accurate account about these topics. We also show that unexpected differences may sometimes arise between Laplace discretizations and Divergence discretizations.
Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
objectivity
natural boundary conditions
Navier-Stokes equations
Finite Elementmethod, - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/21464
Ver los metadatos del registro completo
id |
CONICETDig_c43d5104303fcd3685b09df55c671232 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/21464 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Laplace Form Of Navier-Stokes Equations: A Safe Path Or A Wrong Way?Limache, Alejandro CesarIdelsohn, Sergio Rodolfoobjectivitynatural boundary conditionsNavier-Stokes equationsFinite Elementmethod,https://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The Navier-Stokes Equations written in Laplace form are often the departure point for the simulation of viscous newtonian flows and some studies of numerical stability. Researchers may not be fully aware that the “physical traction boundary conditions” are not the “natural boundary conditions” of the Laplace form of the Navier-Stokes Equations. This is not a problem per se, as long as one manages to rigurously incorporate the physical boundary conditions into the formulation. However, we have discovered that if some seemenly harmless assumptions are made, like using pseudo-tractions (i.e the natural boundary conditions of the Laplace form) or neglecting viscous terms on the free-surfaces, the resulting formulation violates a basic axiom of continuum mechanics: the principle of objectivity. In the present article we give an accurate account about these topics. We also show that unexpected differences may sometimes arise between Laplace discretizations and Divergence discretizations.Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaAsociacion Argentina de Mecanica Computacional2006-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21464Limache, Alejandro Cesar; Idelsohn, Sergio Rodolfo; Laplace Form Of Navier-Stokes Equations: A Safe Path Or A Wrong Way?; Asociacion Argentina de Mecanica Computacional; Mecánica Computacional; XXV; 2; 11-2006; 151-1681666-6070CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.cimec.org.ar/ojs/index.php/mc/article/view/486info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:47:45Zoai:ri.conicet.gov.ar:11336/21464instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:45.297CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Laplace Form Of Navier-Stokes Equations: A Safe Path Or A Wrong Way? |
title |
Laplace Form Of Navier-Stokes Equations: A Safe Path Or A Wrong Way? |
spellingShingle |
Laplace Form Of Navier-Stokes Equations: A Safe Path Or A Wrong Way? Limache, Alejandro Cesar objectivity natural boundary conditions Navier-Stokes equations Finite Elementmethod, |
title_short |
Laplace Form Of Navier-Stokes Equations: A Safe Path Or A Wrong Way? |
title_full |
Laplace Form Of Navier-Stokes Equations: A Safe Path Or A Wrong Way? |
title_fullStr |
Laplace Form Of Navier-Stokes Equations: A Safe Path Or A Wrong Way? |
title_full_unstemmed |
Laplace Form Of Navier-Stokes Equations: A Safe Path Or A Wrong Way? |
title_sort |
Laplace Form Of Navier-Stokes Equations: A Safe Path Or A Wrong Way? |
dc.creator.none.fl_str_mv |
Limache, Alejandro Cesar Idelsohn, Sergio Rodolfo |
author |
Limache, Alejandro Cesar |
author_facet |
Limache, Alejandro Cesar Idelsohn, Sergio Rodolfo |
author_role |
author |
author2 |
Idelsohn, Sergio Rodolfo |
author2_role |
author |
dc.subject.none.fl_str_mv |
objectivity natural boundary conditions Navier-Stokes equations Finite Elementmethod, |
topic |
objectivity natural boundary conditions Navier-Stokes equations Finite Elementmethod, |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The Navier-Stokes Equations written in Laplace form are often the departure point for the simulation of viscous newtonian flows and some studies of numerical stability. Researchers may not be fully aware that the “physical traction boundary conditions” are not the “natural boundary conditions” of the Laplace form of the Navier-Stokes Equations. This is not a problem per se, as long as one manages to rigurously incorporate the physical boundary conditions into the formulation. However, we have discovered that if some seemenly harmless assumptions are made, like using pseudo-tractions (i.e the natural boundary conditions of the Laplace form) or neglecting viscous terms on the free-surfaces, the resulting formulation violates a basic axiom of continuum mechanics: the principle of objectivity. In the present article we give an accurate account about these topics. We also show that unexpected differences may sometimes arise between Laplace discretizations and Divergence discretizations. Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
The Navier-Stokes Equations written in Laplace form are often the departure point for the simulation of viscous newtonian flows and some studies of numerical stability. Researchers may not be fully aware that the “physical traction boundary conditions” are not the “natural boundary conditions” of the Laplace form of the Navier-Stokes Equations. This is not a problem per se, as long as one manages to rigurously incorporate the physical boundary conditions into the formulation. However, we have discovered that if some seemenly harmless assumptions are made, like using pseudo-tractions (i.e the natural boundary conditions of the Laplace form) or neglecting viscous terms on the free-surfaces, the resulting formulation violates a basic axiom of continuum mechanics: the principle of objectivity. In the present article we give an accurate account about these topics. We also show that unexpected differences may sometimes arise between Laplace discretizations and Divergence discretizations. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/21464 Limache, Alejandro Cesar; Idelsohn, Sergio Rodolfo; Laplace Form Of Navier-Stokes Equations: A Safe Path Or A Wrong Way?; Asociacion Argentina de Mecanica Computacional; Mecánica Computacional; XXV; 2; 11-2006; 151-168 1666-6070 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/21464 |
identifier_str_mv |
Limache, Alejandro Cesar; Idelsohn, Sergio Rodolfo; Laplace Form Of Navier-Stokes Equations: A Safe Path Or A Wrong Way?; Asociacion Argentina de Mecanica Computacional; Mecánica Computacional; XXV; 2; 11-2006; 151-168 1666-6070 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.cimec.org.ar/ojs/index.php/mc/article/view/486 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Asociacion Argentina de Mecanica Computacional |
publisher.none.fl_str_mv |
Asociacion Argentina de Mecanica Computacional |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614521947160576 |
score |
13.070432 |