A robust version of the Lee filter for speckle reduction and contrast enhancement applied to side scan sonar images
- Autores
- Ferraggine, Viviana; Villar, Sebastián
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión aceptada
- Descripción
- Sonar images are typically affected by a granular pattern interference known as speckle noise, which degrades image contrast. To aid in object detection and recognition for speckled imagery, a robust version of the Lee filter is presented. The new method essentially combines robust statistics with an adaptive approach to achieve an effective balance between contrast stretching and speckle reduction. Tests were performed on real sonar images, where objective metrics and direct visual perception were used to evaluate the results. Experiments have shown that this easy-to-implement filter remarkably highlights edges and details with apparent speckle reduction, offering a promising simple tool that may be useful in segmentation and classification applications.
Publicado en: 2020 IEEE Congreso Bienal de Argentina (ARGENCON) - Materia
-
Ciencias de la Computación e Información
Side Scan Sonar
Noise reduction
Image enhancement
Robust statistics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/11080
Ver los metadatos del registro completo
id |
CICBA_1350832de7d3858d0cf7dece1d5d3fb6 |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/11080 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
A robust version of the Lee filter for speckle reduction and contrast enhancement applied to side scan sonar imagesFerraggine, VivianaVillar, SebastiánCiencias de la Computación e InformaciónSide Scan SonarNoise reductionImage enhancementRobust statisticsSonar images are typically affected by a granular pattern interference known as speckle noise, which degrades image contrast. To aid in object detection and recognition for speckled imagery, a robust version of the Lee filter is presented. The new method essentially combines robust statistics with an adaptive approach to achieve an effective balance between contrast stretching and speckle reduction. Tests were performed on real sonar images, where objective metrics and direct visual perception were used to evaluate the results. Experiments have shown that this easy-to-implement filter remarkably highlights edges and details with apparent speckle reduction, offering a promising simple tool that may be useful in segmentation and classification applications.Publicado en: 2020 IEEE Congreso Bienal de Argentina (ARGENCON)2020-12info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/11080enginfo:eu-repo/semantics/altIdentifier/doi/10.1109/ARGENCON49523.2020.9505346info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:40:11Zoai:digital.cic.gba.gob.ar:11746/11080Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:40:11.696CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
A robust version of the Lee filter for speckle reduction and contrast enhancement applied to side scan sonar images |
title |
A robust version of the Lee filter for speckle reduction and contrast enhancement applied to side scan sonar images |
spellingShingle |
A robust version of the Lee filter for speckle reduction and contrast enhancement applied to side scan sonar images Ferraggine, Viviana Ciencias de la Computación e Información Side Scan Sonar Noise reduction Image enhancement Robust statistics |
title_short |
A robust version of the Lee filter for speckle reduction and contrast enhancement applied to side scan sonar images |
title_full |
A robust version of the Lee filter for speckle reduction and contrast enhancement applied to side scan sonar images |
title_fullStr |
A robust version of the Lee filter for speckle reduction and contrast enhancement applied to side scan sonar images |
title_full_unstemmed |
A robust version of the Lee filter for speckle reduction and contrast enhancement applied to side scan sonar images |
title_sort |
A robust version of the Lee filter for speckle reduction and contrast enhancement applied to side scan sonar images |
dc.creator.none.fl_str_mv |
Ferraggine, Viviana Villar, Sebastián |
author |
Ferraggine, Viviana |
author_facet |
Ferraggine, Viviana Villar, Sebastián |
author_role |
author |
author2 |
Villar, Sebastián |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias de la Computación e Información Side Scan Sonar Noise reduction Image enhancement Robust statistics |
topic |
Ciencias de la Computación e Información Side Scan Sonar Noise reduction Image enhancement Robust statistics |
dc.description.none.fl_txt_mv |
Sonar images are typically affected by a granular pattern interference known as speckle noise, which degrades image contrast. To aid in object detection and recognition for speckled imagery, a robust version of the Lee filter is presented. The new method essentially combines robust statistics with an adaptive approach to achieve an effective balance between contrast stretching and speckle reduction. Tests were performed on real sonar images, where objective metrics and direct visual perception were used to evaluate the results. Experiments have shown that this easy-to-implement filter remarkably highlights edges and details with apparent speckle reduction, offering a promising simple tool that may be useful in segmentation and classification applications. Publicado en: 2020 IEEE Congreso Bienal de Argentina (ARGENCON) |
description |
Sonar images are typically affected by a granular pattern interference known as speckle noise, which degrades image contrast. To aid in object detection and recognition for speckled imagery, a robust version of the Lee filter is presented. The new method essentially combines robust statistics with an adaptive approach to achieve an effective balance between contrast stretching and speckle reduction. Tests were performed on real sonar images, where objective metrics and direct visual perception were used to evaluate the results. Experiments have shown that this easy-to-implement filter remarkably highlights edges and details with apparent speckle reduction, offering a promising simple tool that may be useful in segmentation and classification applications. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/11080 |
url |
https://digital.cic.gba.gob.ar/handle/11746/11080 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1109/ARGENCON49523.2020.9505346 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1844618606689648640 |
score |
13.070432 |