Efficient Approach for OS-CFAR 2D Technique Using Distributive Histograms and Breakdown Point Optimal Concept applied to Acoustic Images
- Autores
- Villar, Sebastian Aldo; Menna, Bruno Victorio; Torcida, Sebastián; Acosta, Gerardo Gabriel
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, a new approach to improve the algorithmic efficiency of the Order Statistic-Constant False Alarm Rate (OS-CFAR) applied in two dimensions (2D) is presented. OS-CFAR is widely used in radar technology for detecting moving objects as well as in sonar technology for the relevant areas of segmentation and multi-target detection on the seafloor. OS-CFAR rank orders the samples obtained from a sliding window around a test cell to select a representative sample that is used to calculate an adaptive detection threshold maintaining a false alarm probability. Then, the test cell is evaluated to determine the presence or absence of a target based on the calculated threshold. The rank orders allows that OS-CFAR technique to be more robust in multi-target situations and less sensitive than other methods to the presence of the speckle noise, but requires higher computational effort. This is the bottleneck of the technique. Consequently, the contribution of this work is to improve the OS-CFAR 2D with the distributive histograms and the optimal breakdown point optimal concept, mainly from the standpoint of efficient computation. In this way, the OS-CFAR 2D on-line computation was improved, by means of speeding up the samples sorting problem through the improvement in the calculus of the statistics order. The theoretical algorithm analysis is presented to demonstrate the improvement of this approach. Also, this novel efficient OS-CFAR 2D was contrasted experimentally on acoustic images.
Fil: Villar, Sebastian Aldo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarría. Departamento de Electromecánica. Grupo INTELYMEC; Argentina
Fil: Menna, Bruno Victorio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarría. Departamento de Electromecánica. Grupo INTELYMEC; Argentina
Fil: Torcida, Sebastián. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina
Fil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarría. Departamento de Electromecánica. Grupo INTELYMEC; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina - Materia
-
ORDER STATISTICS - CONSTANT FALSE ALARM RATE
IMAGE PROCESSING
SIDE SCAN SONAR
ACOUSTIC IMAGES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/105252
Ver los metadatos del registro completo
id |
CONICETDig_32c810f65e30b7f81f33c4101a036a8b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/105252 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Efficient Approach for OS-CFAR 2D Technique Using Distributive Histograms and Breakdown Point Optimal Concept applied to Acoustic ImagesVillar, Sebastian AldoMenna, Bruno VictorioTorcida, SebastiánAcosta, Gerardo GabrielORDER STATISTICS - CONSTANT FALSE ALARM RATEIMAGE PROCESSINGSIDE SCAN SONARACOUSTIC IMAGEShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this work, a new approach to improve the algorithmic efficiency of the Order Statistic-Constant False Alarm Rate (OS-CFAR) applied in two dimensions (2D) is presented. OS-CFAR is widely used in radar technology for detecting moving objects as well as in sonar technology for the relevant areas of segmentation and multi-target detection on the seafloor. OS-CFAR rank orders the samples obtained from a sliding window around a test cell to select a representative sample that is used to calculate an adaptive detection threshold maintaining a false alarm probability. Then, the test cell is evaluated to determine the presence or absence of a target based on the calculated threshold. The rank orders allows that OS-CFAR technique to be more robust in multi-target situations and less sensitive than other methods to the presence of the speckle noise, but requires higher computational effort. This is the bottleneck of the technique. Consequently, the contribution of this work is to improve the OS-CFAR 2D with the distributive histograms and the optimal breakdown point optimal concept, mainly from the standpoint of efficient computation. In this way, the OS-CFAR 2D on-line computation was improved, by means of speeding up the samples sorting problem through the improvement in the calculus of the statistics order. The theoretical algorithm analysis is presented to demonstrate the improvement of this approach. Also, this novel efficient OS-CFAR 2D was contrasted experimentally on acoustic images.Fil: Villar, Sebastian Aldo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarría. Departamento de Electromecánica. Grupo INTELYMEC; ArgentinaFil: Menna, Bruno Victorio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarría. Departamento de Electromecánica. Grupo INTELYMEC; ArgentinaFil: Torcida, Sebastián. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; ArgentinaFil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarría. Departamento de Electromecánica. Grupo INTELYMEC; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; ArgentinaInstitution of Engineering and Technology2019-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/105252Villar, Sebastian Aldo; Menna, Bruno Victorio; Torcida, Sebastián; Acosta, Gerardo Gabriel; Efficient Approach for OS-CFAR 2D Technique Using Distributive Histograms and Breakdown Point Optimal Concept applied to Acoustic Images; Institution of Engineering and Technology; Iet Radar Sonar And Navigation; 13; 12; 12-2019; 2071-20821751-87841751-8792CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8956194info:eu-repo/semantics/altIdentifier/doi/10.1049/iet-rsn.2018.5619info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:06Zoai:ri.conicet.gov.ar:11336/105252instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:06.843CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Efficient Approach for OS-CFAR 2D Technique Using Distributive Histograms and Breakdown Point Optimal Concept applied to Acoustic Images |
title |
Efficient Approach for OS-CFAR 2D Technique Using Distributive Histograms and Breakdown Point Optimal Concept applied to Acoustic Images |
spellingShingle |
Efficient Approach for OS-CFAR 2D Technique Using Distributive Histograms and Breakdown Point Optimal Concept applied to Acoustic Images Villar, Sebastian Aldo ORDER STATISTICS - CONSTANT FALSE ALARM RATE IMAGE PROCESSING SIDE SCAN SONAR ACOUSTIC IMAGES |
title_short |
Efficient Approach for OS-CFAR 2D Technique Using Distributive Histograms and Breakdown Point Optimal Concept applied to Acoustic Images |
title_full |
Efficient Approach for OS-CFAR 2D Technique Using Distributive Histograms and Breakdown Point Optimal Concept applied to Acoustic Images |
title_fullStr |
Efficient Approach for OS-CFAR 2D Technique Using Distributive Histograms and Breakdown Point Optimal Concept applied to Acoustic Images |
title_full_unstemmed |
Efficient Approach for OS-CFAR 2D Technique Using Distributive Histograms and Breakdown Point Optimal Concept applied to Acoustic Images |
title_sort |
Efficient Approach for OS-CFAR 2D Technique Using Distributive Histograms and Breakdown Point Optimal Concept applied to Acoustic Images |
dc.creator.none.fl_str_mv |
Villar, Sebastian Aldo Menna, Bruno Victorio Torcida, Sebastián Acosta, Gerardo Gabriel |
author |
Villar, Sebastian Aldo |
author_facet |
Villar, Sebastian Aldo Menna, Bruno Victorio Torcida, Sebastián Acosta, Gerardo Gabriel |
author_role |
author |
author2 |
Menna, Bruno Victorio Torcida, Sebastián Acosta, Gerardo Gabriel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ORDER STATISTICS - CONSTANT FALSE ALARM RATE IMAGE PROCESSING SIDE SCAN SONAR ACOUSTIC IMAGES |
topic |
ORDER STATISTICS - CONSTANT FALSE ALARM RATE IMAGE PROCESSING SIDE SCAN SONAR ACOUSTIC IMAGES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work, a new approach to improve the algorithmic efficiency of the Order Statistic-Constant False Alarm Rate (OS-CFAR) applied in two dimensions (2D) is presented. OS-CFAR is widely used in radar technology for detecting moving objects as well as in sonar technology for the relevant areas of segmentation and multi-target detection on the seafloor. OS-CFAR rank orders the samples obtained from a sliding window around a test cell to select a representative sample that is used to calculate an adaptive detection threshold maintaining a false alarm probability. Then, the test cell is evaluated to determine the presence or absence of a target based on the calculated threshold. The rank orders allows that OS-CFAR technique to be more robust in multi-target situations and less sensitive than other methods to the presence of the speckle noise, but requires higher computational effort. This is the bottleneck of the technique. Consequently, the contribution of this work is to improve the OS-CFAR 2D with the distributive histograms and the optimal breakdown point optimal concept, mainly from the standpoint of efficient computation. In this way, the OS-CFAR 2D on-line computation was improved, by means of speeding up the samples sorting problem through the improvement in the calculus of the statistics order. The theoretical algorithm analysis is presented to demonstrate the improvement of this approach. Also, this novel efficient OS-CFAR 2D was contrasted experimentally on acoustic images. Fil: Villar, Sebastian Aldo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarría. Departamento de Electromecánica. Grupo INTELYMEC; Argentina Fil: Menna, Bruno Victorio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarría. Departamento de Electromecánica. Grupo INTELYMEC; Argentina Fil: Torcida, Sebastián. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina Fil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarría. Departamento de Electromecánica. Grupo INTELYMEC; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina |
description |
In this work, a new approach to improve the algorithmic efficiency of the Order Statistic-Constant False Alarm Rate (OS-CFAR) applied in two dimensions (2D) is presented. OS-CFAR is widely used in radar technology for detecting moving objects as well as in sonar technology for the relevant areas of segmentation and multi-target detection on the seafloor. OS-CFAR rank orders the samples obtained from a sliding window around a test cell to select a representative sample that is used to calculate an adaptive detection threshold maintaining a false alarm probability. Then, the test cell is evaluated to determine the presence or absence of a target based on the calculated threshold. The rank orders allows that OS-CFAR technique to be more robust in multi-target situations and less sensitive than other methods to the presence of the speckle noise, but requires higher computational effort. This is the bottleneck of the technique. Consequently, the contribution of this work is to improve the OS-CFAR 2D with the distributive histograms and the optimal breakdown point optimal concept, mainly from the standpoint of efficient computation. In this way, the OS-CFAR 2D on-line computation was improved, by means of speeding up the samples sorting problem through the improvement in the calculus of the statistics order. The theoretical algorithm analysis is presented to demonstrate the improvement of this approach. Also, this novel efficient OS-CFAR 2D was contrasted experimentally on acoustic images. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/105252 Villar, Sebastian Aldo; Menna, Bruno Victorio; Torcida, Sebastián; Acosta, Gerardo Gabriel; Efficient Approach for OS-CFAR 2D Technique Using Distributive Histograms and Breakdown Point Optimal Concept applied to Acoustic Images; Institution of Engineering and Technology; Iet Radar Sonar And Navigation; 13; 12; 12-2019; 2071-2082 1751-8784 1751-8792 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/105252 |
identifier_str_mv |
Villar, Sebastian Aldo; Menna, Bruno Victorio; Torcida, Sebastián; Acosta, Gerardo Gabriel; Efficient Approach for OS-CFAR 2D Technique Using Distributive Histograms and Breakdown Point Optimal Concept applied to Acoustic Images; Institution of Engineering and Technology; Iet Radar Sonar And Navigation; 13; 12; 12-2019; 2071-2082 1751-8784 1751-8792 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8956194 info:eu-repo/semantics/altIdentifier/doi/10.1049/iet-rsn.2018.5619 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institution of Engineering and Technology |
publisher.none.fl_str_mv |
Institution of Engineering and Technology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614296347082752 |
score |
13.070432 |