A finite element method for stiffened plates
- Autores
- Durán, R.; Rodríguez, R.; Sanhueza, F.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The aim of this paper is to analyze a low order finite element method for a stiffened plate. The plate is modeled by Reissner-Mindlin equations and the stiffener by Timoshenko beams equations. The resulting problem is shown to be well posed. In the case of concentric stiffeners it decouples into two problems, one for the in-plane plate deformation and the other for the bending of the plate. The analysis and discretization of the first one is straightforward. The second one is shown to have a solution bounded above and below independently of the thickness of the plate. A discretization based on DL3 finite elements combined with ad-hoc elements for the stiffener is proposed. Optimal order error estimates are proved for displacements, rotations and shear stresses for the plate and the stiffener. Numerical tests are reported in order to assess the performance of the method. These numerical computations demonstrate that the error estimates are independent of the thickness, providing a numerical evidence that the method is locking-free. © EDP Sciences, SMAI, 2011.
Fil:Durán, R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- ESAIM: Math. Model. Numer. Anal. 2012;46(2):291-315
- Materia
-
Error estimates
Finite elements
Locking
Reissner-Mindlin model
Stiffened plates
Timoshenko beam
Error estimates
Finite Element
Locking
Reissner-Mindlin model
Stiffened plate
Timoshenko beams
Bending (deformation)
Estimation
Mindlin plates
Numerical methods
Particle beams
Finite element method - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0764583X_v46_n2_p291_Duran
Ver los metadatos del registro completo
id |
BDUBAFCEN_fc7f4b6937bb7961c4ec0abc5f776e84 |
---|---|
oai_identifier_str |
paperaa:paper_0764583X_v46_n2_p291_Duran |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
A finite element method for stiffened platesDurán, R.Rodríguez, R.Sanhueza, F.Error estimatesFinite elementsLockingReissner-Mindlin modelStiffened platesTimoshenko beamError estimatesFinite ElementLockingReissner-Mindlin modelStiffened plateTimoshenko beamsBending (deformation)EstimationMindlin platesNumerical methodsParticle beamsFinite element methodThe aim of this paper is to analyze a low order finite element method for a stiffened plate. The plate is modeled by Reissner-Mindlin equations and the stiffener by Timoshenko beams equations. The resulting problem is shown to be well posed. In the case of concentric stiffeners it decouples into two problems, one for the in-plane plate deformation and the other for the bending of the plate. The analysis and discretization of the first one is straightforward. The second one is shown to have a solution bounded above and below independently of the thickness of the plate. A discretization based on DL3 finite elements combined with ad-hoc elements for the stiffener is proposed. Optimal order error estimates are proved for displacements, rotations and shear stresses for the plate and the stiffener. Numerical tests are reported in order to assess the performance of the method. These numerical computations demonstrate that the error estimates are independent of the thickness, providing a numerical evidence that the method is locking-free. © EDP Sciences, SMAI, 2011.Fil:Durán, R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0764583X_v46_n2_p291_DuranESAIM: Math. Model. Numer. Anal. 2012;46(2):291-315reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-16T09:30:13Zpaperaa:paper_0764583X_v46_n2_p291_DuranInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:30:14.815Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
A finite element method for stiffened plates |
title |
A finite element method for stiffened plates |
spellingShingle |
A finite element method for stiffened plates Durán, R. Error estimates Finite elements Locking Reissner-Mindlin model Stiffened plates Timoshenko beam Error estimates Finite Element Locking Reissner-Mindlin model Stiffened plate Timoshenko beams Bending (deformation) Estimation Mindlin plates Numerical methods Particle beams Finite element method |
title_short |
A finite element method for stiffened plates |
title_full |
A finite element method for stiffened plates |
title_fullStr |
A finite element method for stiffened plates |
title_full_unstemmed |
A finite element method for stiffened plates |
title_sort |
A finite element method for stiffened plates |
dc.creator.none.fl_str_mv |
Durán, R. Rodríguez, R. Sanhueza, F. |
author |
Durán, R. |
author_facet |
Durán, R. Rodríguez, R. Sanhueza, F. |
author_role |
author |
author2 |
Rodríguez, R. Sanhueza, F. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Error estimates Finite elements Locking Reissner-Mindlin model Stiffened plates Timoshenko beam Error estimates Finite Element Locking Reissner-Mindlin model Stiffened plate Timoshenko beams Bending (deformation) Estimation Mindlin plates Numerical methods Particle beams Finite element method |
topic |
Error estimates Finite elements Locking Reissner-Mindlin model Stiffened plates Timoshenko beam Error estimates Finite Element Locking Reissner-Mindlin model Stiffened plate Timoshenko beams Bending (deformation) Estimation Mindlin plates Numerical methods Particle beams Finite element method |
dc.description.none.fl_txt_mv |
The aim of this paper is to analyze a low order finite element method for a stiffened plate. The plate is modeled by Reissner-Mindlin equations and the stiffener by Timoshenko beams equations. The resulting problem is shown to be well posed. In the case of concentric stiffeners it decouples into two problems, one for the in-plane plate deformation and the other for the bending of the plate. The analysis and discretization of the first one is straightforward. The second one is shown to have a solution bounded above and below independently of the thickness of the plate. A discretization based on DL3 finite elements combined with ad-hoc elements for the stiffener is proposed. Optimal order error estimates are proved for displacements, rotations and shear stresses for the plate and the stiffener. Numerical tests are reported in order to assess the performance of the method. These numerical computations demonstrate that the error estimates are independent of the thickness, providing a numerical evidence that the method is locking-free. © EDP Sciences, SMAI, 2011. Fil:Durán, R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
The aim of this paper is to analyze a low order finite element method for a stiffened plate. The plate is modeled by Reissner-Mindlin equations and the stiffener by Timoshenko beams equations. The resulting problem is shown to be well posed. In the case of concentric stiffeners it decouples into two problems, one for the in-plane plate deformation and the other for the bending of the plate. The analysis and discretization of the first one is straightforward. The second one is shown to have a solution bounded above and below independently of the thickness of the plate. A discretization based on DL3 finite elements combined with ad-hoc elements for the stiffener is proposed. Optimal order error estimates are proved for displacements, rotations and shear stresses for the plate and the stiffener. Numerical tests are reported in order to assess the performance of the method. These numerical computations demonstrate that the error estimates are independent of the thickness, providing a numerical evidence that the method is locking-free. © EDP Sciences, SMAI, 2011. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0764583X_v46_n2_p291_Duran |
url |
http://hdl.handle.net/20.500.12110/paper_0764583X_v46_n2_p291_Duran |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
ESAIM: Math. Model. Numer. Anal. 2012;46(2):291-315 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1846142847752863744 |
score |
12.712165 |