Numerical analysis of a finite element method to compute the vibration modes of a Reissner-Mindlin laminated plate
- Autores
- Duran, Ricardo Guillermo; Rodríguez, Rodolfo; Sanhueza, Frank
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper deals with the finite element approximation of the vibration modes of a laminated plate modeled by the Reissner-Mindlin equations; DL3 elements are used for the bending terms and standard piecewise linear continuous elements for the in-plane displacements. An a priori estimate of the regularity of the solution, independent of the plate thickness, is proved for the corresponding load problem. This allows using the abstract approximation theory for spectral problems to study the convergence of the proposed finite element method. Thus, optimal order error estimates including a double order for the vibration frequencies are obtained under appropriate assumptions. These estimates are independent of the plate thickness, which leads to the conclusion that the method is locking-free. Numerical tests are reported to assess the performance of the method.
Fil: Duran, Ricardo Guillermo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rodríguez, Rodolfo. Universidad de Concepción; Chile
Fil: Sanhueza, Frank. Universidad de Concepción; Chile - Materia
-
REISSNER-MINDLIN
LAMINATED PLATES
SPECTRAL PROBLEMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14918
Ver los metadatos del registro completo
id |
CONICETDig_5702294a3bccaeea7e0502d5f652314d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14918 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Numerical analysis of a finite element method to compute the vibration modes of a Reissner-Mindlin laminated plateDuran, Ricardo GuillermoRodríguez, RodolfoSanhueza, FrankREISSNER-MINDLINLAMINATED PLATESSPECTRAL PROBLEMShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper deals with the finite element approximation of the vibration modes of a laminated plate modeled by the Reissner-Mindlin equations; DL3 elements are used for the bending terms and standard piecewise linear continuous elements for the in-plane displacements. An a priori estimate of the regularity of the solution, independent of the plate thickness, is proved for the corresponding load problem. This allows using the abstract approximation theory for spectral problems to study the convergence of the proposed finite element method. Thus, optimal order error estimates including a double order for the vibration frequencies are obtained under appropriate assumptions. These estimates are independent of the plate thickness, which leads to the conclusion that the method is locking-free. Numerical tests are reported to assess the performance of the method.Fil: Duran, Ricardo Guillermo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Rodríguez, Rodolfo. Universidad de Concepción; ChileFil: Sanhueza, Frank. Universidad de Concepción; ChileAmerican Mathematical Society2011-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14918Duran, Ricardo Guillermo; Rodríguez, Rodolfo; Sanhueza, Frank; Numerical analysis of a finite element method to compute the vibration modes of a Reissner-Mindlin laminated plate; American Mathematical Society; Mathematics Of Computation; 80; 275; 10-2011; 1239-12640025-5718enginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/mcom/2011-80-275/S0025-5718-2011-02456-7/info:eu-repo/semantics/altIdentifier/doi/10.1090/S0025-5718-2011-02456-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:51Zoai:ri.conicet.gov.ar:11336/14918instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:51.484CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Numerical analysis of a finite element method to compute the vibration modes of a Reissner-Mindlin laminated plate |
title |
Numerical analysis of a finite element method to compute the vibration modes of a Reissner-Mindlin laminated plate |
spellingShingle |
Numerical analysis of a finite element method to compute the vibration modes of a Reissner-Mindlin laminated plate Duran, Ricardo Guillermo REISSNER-MINDLIN LAMINATED PLATES SPECTRAL PROBLEMS |
title_short |
Numerical analysis of a finite element method to compute the vibration modes of a Reissner-Mindlin laminated plate |
title_full |
Numerical analysis of a finite element method to compute the vibration modes of a Reissner-Mindlin laminated plate |
title_fullStr |
Numerical analysis of a finite element method to compute the vibration modes of a Reissner-Mindlin laminated plate |
title_full_unstemmed |
Numerical analysis of a finite element method to compute the vibration modes of a Reissner-Mindlin laminated plate |
title_sort |
Numerical analysis of a finite element method to compute the vibration modes of a Reissner-Mindlin laminated plate |
dc.creator.none.fl_str_mv |
Duran, Ricardo Guillermo Rodríguez, Rodolfo Sanhueza, Frank |
author |
Duran, Ricardo Guillermo |
author_facet |
Duran, Ricardo Guillermo Rodríguez, Rodolfo Sanhueza, Frank |
author_role |
author |
author2 |
Rodríguez, Rodolfo Sanhueza, Frank |
author2_role |
author author |
dc.subject.none.fl_str_mv |
REISSNER-MINDLIN LAMINATED PLATES SPECTRAL PROBLEMS |
topic |
REISSNER-MINDLIN LAMINATED PLATES SPECTRAL PROBLEMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper deals with the finite element approximation of the vibration modes of a laminated plate modeled by the Reissner-Mindlin equations; DL3 elements are used for the bending terms and standard piecewise linear continuous elements for the in-plane displacements. An a priori estimate of the regularity of the solution, independent of the plate thickness, is proved for the corresponding load problem. This allows using the abstract approximation theory for spectral problems to study the convergence of the proposed finite element method. Thus, optimal order error estimates including a double order for the vibration frequencies are obtained under appropriate assumptions. These estimates are independent of the plate thickness, which leads to the conclusion that the method is locking-free. Numerical tests are reported to assess the performance of the method. Fil: Duran, Ricardo Guillermo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Rodríguez, Rodolfo. Universidad de Concepción; Chile Fil: Sanhueza, Frank. Universidad de Concepción; Chile |
description |
This paper deals with the finite element approximation of the vibration modes of a laminated plate modeled by the Reissner-Mindlin equations; DL3 elements are used for the bending terms and standard piecewise linear continuous elements for the in-plane displacements. An a priori estimate of the regularity of the solution, independent of the plate thickness, is proved for the corresponding load problem. This allows using the abstract approximation theory for spectral problems to study the convergence of the proposed finite element method. Thus, optimal order error estimates including a double order for the vibration frequencies are obtained under appropriate assumptions. These estimates are independent of the plate thickness, which leads to the conclusion that the method is locking-free. Numerical tests are reported to assess the performance of the method. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14918 Duran, Ricardo Guillermo; Rodríguez, Rodolfo; Sanhueza, Frank; Numerical analysis of a finite element method to compute the vibration modes of a Reissner-Mindlin laminated plate; American Mathematical Society; Mathematics Of Computation; 80; 275; 10-2011; 1239-1264 0025-5718 |
url |
http://hdl.handle.net/11336/14918 |
identifier_str_mv |
Duran, Ricardo Guillermo; Rodríguez, Rodolfo; Sanhueza, Frank; Numerical analysis of a finite element method to compute the vibration modes of a Reissner-Mindlin laminated plate; American Mathematical Society; Mathematics Of Computation; 80; 275; 10-2011; 1239-1264 0025-5718 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/mcom/2011-80-275/S0025-5718-2011-02456-7/ info:eu-repo/semantics/altIdentifier/doi/10.1090/S0025-5718-2011-02456-7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613705108553728 |
score |
13.070432 |