A branch-and-cut algorithm for the minimum-adjacency vertex coloring problem

Autores
Delle Donne, D.; Marenco, J.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we study a particular way of dealing with interference in combinatorial optimization models representing wireless communication networks. In a typical wireless network, co-channel interference occurs whenever two overlapping antennas use the same frequency channel, and a less critical interference is generated whenever two overlapping antennas use adjacent channels. This motivates the formulation of the minimum-adjacency vertex coloring problem which, given an interference graph G representing the potential interference between the antennas and a set of prespecified colors/channels, asks for a vertex coloring of G minimizing the number of edges receiving adjacent colors. We propose an integer programming model for this problem and present three families of facet-inducing valid inequalities. Based on these results, we implement a branch-and-cut algorithm for this problem, and we provide promising computational results. © 2011 Elsevier B.V. All rights reserved.
Fil:Delle Donne, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Marenco, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Discrete Optim. 2011;8(4):540-554
Materia
Adjacent colors
Frequency assignment
Integer programming
Adjacent channels
Adjacent colors
Branch-and-cut algorithms
Computational results
Frequency assignments
Frequency channels
Integer programming models
Interference graphs
Potential interferences
Valid inequality
Vertex coloring
Vertex coloring problems
Wireless communication network
Algorithms
Antennas
Cochannel interference
Combinatorial optimization
Computer programming
Graph theory
Wireless networks
Wireless telecommunication systems
Integer programming
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_15725286_v8_n4_p540_DelleDonne

id BDUBAFCEN_e0efc5d64fce15beab135523116fd710
oai_identifier_str paperaa:paper_15725286_v8_n4_p540_DelleDonne
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling A branch-and-cut algorithm for the minimum-adjacency vertex coloring problemDelle Donne, D.Marenco, J.Adjacent colorsFrequency assignmentInteger programmingAdjacent channelsAdjacent colorsBranch-and-cut algorithmsComputational resultsFrequency assignmentsFrequency channelsInteger programming modelsInterference graphsPotential interferencesValid inequalityVertex coloringVertex coloring problemsWireless communication networkAlgorithmsAntennasCochannel interferenceCombinatorial optimizationComputer programmingGraph theoryWireless networksWireless telecommunication systemsInteger programmingIn this work we study a particular way of dealing with interference in combinatorial optimization models representing wireless communication networks. In a typical wireless network, co-channel interference occurs whenever two overlapping antennas use the same frequency channel, and a less critical interference is generated whenever two overlapping antennas use adjacent channels. This motivates the formulation of the minimum-adjacency vertex coloring problem which, given an interference graph G representing the potential interference between the antennas and a set of prespecified colors/channels, asks for a vertex coloring of G minimizing the number of edges receiving adjacent colors. We propose an integer programming model for this problem and present three families of facet-inducing valid inequalities. Based on these results, we implement a branch-and-cut algorithm for this problem, and we provide promising computational results. © 2011 Elsevier B.V. All rights reserved.Fil:Delle Donne, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Marenco, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_15725286_v8_n4_p540_DelleDonneDiscrete Optim. 2011;8(4):540-554reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:47Zpaperaa:paper_15725286_v8_n4_p540_DelleDonneInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:49.054Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv A branch-and-cut algorithm for the minimum-adjacency vertex coloring problem
title A branch-and-cut algorithm for the minimum-adjacency vertex coloring problem
spellingShingle A branch-and-cut algorithm for the minimum-adjacency vertex coloring problem
Delle Donne, D.
Adjacent colors
Frequency assignment
Integer programming
Adjacent channels
Adjacent colors
Branch-and-cut algorithms
Computational results
Frequency assignments
Frequency channels
Integer programming models
Interference graphs
Potential interferences
Valid inequality
Vertex coloring
Vertex coloring problems
Wireless communication network
Algorithms
Antennas
Cochannel interference
Combinatorial optimization
Computer programming
Graph theory
Wireless networks
Wireless telecommunication systems
Integer programming
title_short A branch-and-cut algorithm for the minimum-adjacency vertex coloring problem
title_full A branch-and-cut algorithm for the minimum-adjacency vertex coloring problem
title_fullStr A branch-and-cut algorithm for the minimum-adjacency vertex coloring problem
title_full_unstemmed A branch-and-cut algorithm for the minimum-adjacency vertex coloring problem
title_sort A branch-and-cut algorithm for the minimum-adjacency vertex coloring problem
dc.creator.none.fl_str_mv Delle Donne, D.
Marenco, J.
author Delle Donne, D.
author_facet Delle Donne, D.
Marenco, J.
author_role author
author2 Marenco, J.
author2_role author
dc.subject.none.fl_str_mv Adjacent colors
Frequency assignment
Integer programming
Adjacent channels
Adjacent colors
Branch-and-cut algorithms
Computational results
Frequency assignments
Frequency channels
Integer programming models
Interference graphs
Potential interferences
Valid inequality
Vertex coloring
Vertex coloring problems
Wireless communication network
Algorithms
Antennas
Cochannel interference
Combinatorial optimization
Computer programming
Graph theory
Wireless networks
Wireless telecommunication systems
Integer programming
topic Adjacent colors
Frequency assignment
Integer programming
Adjacent channels
Adjacent colors
Branch-and-cut algorithms
Computational results
Frequency assignments
Frequency channels
Integer programming models
Interference graphs
Potential interferences
Valid inequality
Vertex coloring
Vertex coloring problems
Wireless communication network
Algorithms
Antennas
Cochannel interference
Combinatorial optimization
Computer programming
Graph theory
Wireless networks
Wireless telecommunication systems
Integer programming
dc.description.none.fl_txt_mv In this work we study a particular way of dealing with interference in combinatorial optimization models representing wireless communication networks. In a typical wireless network, co-channel interference occurs whenever two overlapping antennas use the same frequency channel, and a less critical interference is generated whenever two overlapping antennas use adjacent channels. This motivates the formulation of the minimum-adjacency vertex coloring problem which, given an interference graph G representing the potential interference between the antennas and a set of prespecified colors/channels, asks for a vertex coloring of G minimizing the number of edges receiving adjacent colors. We propose an integer programming model for this problem and present three families of facet-inducing valid inequalities. Based on these results, we implement a branch-and-cut algorithm for this problem, and we provide promising computational results. © 2011 Elsevier B.V. All rights reserved.
Fil:Delle Donne, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Marenco, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In this work we study a particular way of dealing with interference in combinatorial optimization models representing wireless communication networks. In a typical wireless network, co-channel interference occurs whenever two overlapping antennas use the same frequency channel, and a less critical interference is generated whenever two overlapping antennas use adjacent channels. This motivates the formulation of the minimum-adjacency vertex coloring problem which, given an interference graph G representing the potential interference between the antennas and a set of prespecified colors/channels, asks for a vertex coloring of G minimizing the number of edges receiving adjacent colors. We propose an integer programming model for this problem and present three families of facet-inducing valid inequalities. Based on these results, we implement a branch-and-cut algorithm for this problem, and we provide promising computational results. © 2011 Elsevier B.V. All rights reserved.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_15725286_v8_n4_p540_DelleDonne
url http://hdl.handle.net/20.500.12110/paper_15725286_v8_n4_p540_DelleDonne
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Discrete Optim. 2011;8(4):540-554
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340707905306624
score 12.623145