A branch-and-cut algorithm for the minimum-adjacency vertex coloring problem
- Autores
- Delle Donne, D.; Marenco, J.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we study a particular way of dealing with interference in combinatorial optimization models representing wireless communication networks. In a typical wireless network, co-channel interference occurs whenever two overlapping antennas use the same frequency channel, and a less critical interference is generated whenever two overlapping antennas use adjacent channels. This motivates the formulation of the minimum-adjacency vertex coloring problem which, given an interference graph G representing the potential interference between the antennas and a set of prespecified colors/channels, asks for a vertex coloring of G minimizing the number of edges receiving adjacent colors. We propose an integer programming model for this problem and present three families of facet-inducing valid inequalities. Based on these results, we implement a branch-and-cut algorithm for this problem, and we provide promising computational results. © 2011 Elsevier B.V. All rights reserved.
Fil:Delle Donne, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Marenco, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Discrete Optim. 2011;8(4):540-554
- Materia
-
Adjacent colors
Frequency assignment
Integer programming
Adjacent channels
Adjacent colors
Branch-and-cut algorithms
Computational results
Frequency assignments
Frequency channels
Integer programming models
Interference graphs
Potential interferences
Valid inequality
Vertex coloring
Vertex coloring problems
Wireless communication network
Algorithms
Antennas
Cochannel interference
Combinatorial optimization
Computer programming
Graph theory
Wireless networks
Wireless telecommunication systems
Integer programming - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_15725286_v8_n4_p540_DelleDonne
Ver los metadatos del registro completo
id |
BDUBAFCEN_e0efc5d64fce15beab135523116fd710 |
---|---|
oai_identifier_str |
paperaa:paper_15725286_v8_n4_p540_DelleDonne |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
A branch-and-cut algorithm for the minimum-adjacency vertex coloring problemDelle Donne, D.Marenco, J.Adjacent colorsFrequency assignmentInteger programmingAdjacent channelsAdjacent colorsBranch-and-cut algorithmsComputational resultsFrequency assignmentsFrequency channelsInteger programming modelsInterference graphsPotential interferencesValid inequalityVertex coloringVertex coloring problemsWireless communication networkAlgorithmsAntennasCochannel interferenceCombinatorial optimizationComputer programmingGraph theoryWireless networksWireless telecommunication systemsInteger programmingIn this work we study a particular way of dealing with interference in combinatorial optimization models representing wireless communication networks. In a typical wireless network, co-channel interference occurs whenever two overlapping antennas use the same frequency channel, and a less critical interference is generated whenever two overlapping antennas use adjacent channels. This motivates the formulation of the minimum-adjacency vertex coloring problem which, given an interference graph G representing the potential interference between the antennas and a set of prespecified colors/channels, asks for a vertex coloring of G minimizing the number of edges receiving adjacent colors. We propose an integer programming model for this problem and present three families of facet-inducing valid inequalities. Based on these results, we implement a branch-and-cut algorithm for this problem, and we provide promising computational results. © 2011 Elsevier B.V. All rights reserved.Fil:Delle Donne, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Marenco, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_15725286_v8_n4_p540_DelleDonneDiscrete Optim. 2011;8(4):540-554reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:47Zpaperaa:paper_15725286_v8_n4_p540_DelleDonneInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:49.054Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
A branch-and-cut algorithm for the minimum-adjacency vertex coloring problem |
title |
A branch-and-cut algorithm for the minimum-adjacency vertex coloring problem |
spellingShingle |
A branch-and-cut algorithm for the minimum-adjacency vertex coloring problem Delle Donne, D. Adjacent colors Frequency assignment Integer programming Adjacent channels Adjacent colors Branch-and-cut algorithms Computational results Frequency assignments Frequency channels Integer programming models Interference graphs Potential interferences Valid inequality Vertex coloring Vertex coloring problems Wireless communication network Algorithms Antennas Cochannel interference Combinatorial optimization Computer programming Graph theory Wireless networks Wireless telecommunication systems Integer programming |
title_short |
A branch-and-cut algorithm for the minimum-adjacency vertex coloring problem |
title_full |
A branch-and-cut algorithm for the minimum-adjacency vertex coloring problem |
title_fullStr |
A branch-and-cut algorithm for the minimum-adjacency vertex coloring problem |
title_full_unstemmed |
A branch-and-cut algorithm for the minimum-adjacency vertex coloring problem |
title_sort |
A branch-and-cut algorithm for the minimum-adjacency vertex coloring problem |
dc.creator.none.fl_str_mv |
Delle Donne, D. Marenco, J. |
author |
Delle Donne, D. |
author_facet |
Delle Donne, D. Marenco, J. |
author_role |
author |
author2 |
Marenco, J. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Adjacent colors Frequency assignment Integer programming Adjacent channels Adjacent colors Branch-and-cut algorithms Computational results Frequency assignments Frequency channels Integer programming models Interference graphs Potential interferences Valid inequality Vertex coloring Vertex coloring problems Wireless communication network Algorithms Antennas Cochannel interference Combinatorial optimization Computer programming Graph theory Wireless networks Wireless telecommunication systems Integer programming |
topic |
Adjacent colors Frequency assignment Integer programming Adjacent channels Adjacent colors Branch-and-cut algorithms Computational results Frequency assignments Frequency channels Integer programming models Interference graphs Potential interferences Valid inequality Vertex coloring Vertex coloring problems Wireless communication network Algorithms Antennas Cochannel interference Combinatorial optimization Computer programming Graph theory Wireless networks Wireless telecommunication systems Integer programming |
dc.description.none.fl_txt_mv |
In this work we study a particular way of dealing with interference in combinatorial optimization models representing wireless communication networks. In a typical wireless network, co-channel interference occurs whenever two overlapping antennas use the same frequency channel, and a less critical interference is generated whenever two overlapping antennas use adjacent channels. This motivates the formulation of the minimum-adjacency vertex coloring problem which, given an interference graph G representing the potential interference between the antennas and a set of prespecified colors/channels, asks for a vertex coloring of G minimizing the number of edges receiving adjacent colors. We propose an integer programming model for this problem and present three families of facet-inducing valid inequalities. Based on these results, we implement a branch-and-cut algorithm for this problem, and we provide promising computational results. © 2011 Elsevier B.V. All rights reserved. Fil:Delle Donne, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Marenco, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
In this work we study a particular way of dealing with interference in combinatorial optimization models representing wireless communication networks. In a typical wireless network, co-channel interference occurs whenever two overlapping antennas use the same frequency channel, and a less critical interference is generated whenever two overlapping antennas use adjacent channels. This motivates the formulation of the minimum-adjacency vertex coloring problem which, given an interference graph G representing the potential interference between the antennas and a set of prespecified colors/channels, asks for a vertex coloring of G minimizing the number of edges receiving adjacent colors. We propose an integer programming model for this problem and present three families of facet-inducing valid inequalities. Based on these results, we implement a branch-and-cut algorithm for this problem, and we provide promising computational results. © 2011 Elsevier B.V. All rights reserved. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_15725286_v8_n4_p540_DelleDonne |
url |
http://hdl.handle.net/20.500.12110/paper_15725286_v8_n4_p540_DelleDonne |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Discrete Optim. 2011;8(4):540-554 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340707905306624 |
score |
12.623145 |