The maximum-impact coloring polytope

Autores
Braga, Mónica Andrea; Marenco, Javier; Delle Donne, Diego; Linfati, Rodrigo
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Revista con referato
Fil: Braga, Mónica. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Marenco, Javier. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Delle Donne, Diego. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Linfati, Rodrigo. Universidad del Bío-Bío; Chile.
Given two graphs G = (V, EG) and H = (V, EH) over the same set of vertices and given a set of colors C, the impact on H of a coloring c : V ! C of G, denoted I(c), is the number of edges ij 2 EH such that c(i) = c(j). In this setting, the maximum-impact coloring problem asks for a proper coloring of G maximizing the impact I(c) on H. This problem naturally arises in the assignment of classrooms to courses, where it is desirable {but not mandatory{ to assign lectures from the same course to the same classroom. Since the maximum-impact coloring problem is NP-hard, we propose in this work an integer-programming-based approach for tackling this problem. To this end, we present an integer programming formulation and we study the associated polytope. We provide several families of valid inequalities, and we study under which conditions these inequalities dene facets of the associated polytope. Finally, we show computational evidence over real-life instances suggesting that some of these families may be useful in a cutting-plane environment.
Fuente
International Transactions in Operational Research. Ene.-Mar. 2017; 24: 303-324
https://onlinelibrary.wiley.com/toc/14753995/2017/24/1-2
Materia
Coloring
Integer Programming
Facets
Matemáticas
Nivel de accesibilidad
acceso restringido
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional UNGS
Institución
Universidad Nacional de General Sarmiento
OAI Identificador
oai:repositorio.ungs.edu.ar:UNGS/2037

id RIUNGS_e3a55c8e4b07016dbccaf3e47c52aded
oai_identifier_str oai:repositorio.ungs.edu.ar:UNGS/2037
network_acronym_str RIUNGS
repository_id_str
network_name_str Repositorio Institucional UNGS
spelling The maximum-impact coloring polytopeBraga, Mónica AndreaMarenco, JavierDelle Donne, DiegoLinfati, RodrigoColoringInteger ProgrammingFacetsMatemáticasRevista con referatoFil: Braga, Mónica. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Marenco, Javier. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Delle Donne, Diego. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Linfati, Rodrigo. Universidad del Bío-Bío; Chile.Given two graphs G = (V, EG) and H = (V, EH) over the same set of vertices and given a set of colors C, the impact on H of a coloring c : V ! C of G, denoted I(c), is the number of edges ij 2 EH such that c(i) = c(j). In this setting, the maximum-impact coloring problem asks for a proper coloring of G maximizing the impact I(c) on H. This problem naturally arises in the assignment of classrooms to courses, where it is desirable {but not mandatory{ to assign lectures from the same course to the same classroom. Since the maximum-impact coloring problem is NP-hard, we propose in this work an integer-programming-based approach for tackling this problem. To this end, we present an integer programming formulation and we study the associated polytope. We provide several families of valid inequalities, and we study under which conditions these inequalities dene facets of the associated polytope. Finally, we show computational evidence over real-life instances suggesting that some of these families may be useful in a cutting-plane environment.Wiley2025-02-05T15:23:27Z2025-02-05T15:23:27Z2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfBraga, M., Delle Donne, D., Linfati, R. y Marenco, J. (2017). The maximum-impact coloring polytope. International Transactions in Operational Research, 24, 303-324.0969-6016http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2037International Transactions in Operational Research. Ene.-Mar. 2017; 24: 303-324https://onlinelibrary.wiley.com/toc/14753995/2017/24/1-2reponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttp://dx.doi.org/10.1111/itor.12265info:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-10-16T15:29:12Zoai:repositorio.ungs.edu.ar:UNGS/2037instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-10-16 15:29:13.134Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse
dc.title.none.fl_str_mv The maximum-impact coloring polytope
title The maximum-impact coloring polytope
spellingShingle The maximum-impact coloring polytope
Braga, Mónica Andrea
Coloring
Integer Programming
Facets
Matemáticas
title_short The maximum-impact coloring polytope
title_full The maximum-impact coloring polytope
title_fullStr The maximum-impact coloring polytope
title_full_unstemmed The maximum-impact coloring polytope
title_sort The maximum-impact coloring polytope
dc.creator.none.fl_str_mv Braga, Mónica Andrea
Marenco, Javier
Delle Donne, Diego
Linfati, Rodrigo
author Braga, Mónica Andrea
author_facet Braga, Mónica Andrea
Marenco, Javier
Delle Donne, Diego
Linfati, Rodrigo
author_role author
author2 Marenco, Javier
Delle Donne, Diego
Linfati, Rodrigo
author2_role author
author
author
dc.subject.none.fl_str_mv Coloring
Integer Programming
Facets
Matemáticas
topic Coloring
Integer Programming
Facets
Matemáticas
dc.description.none.fl_txt_mv Revista con referato
Fil: Braga, Mónica. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Marenco, Javier. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Delle Donne, Diego. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Linfati, Rodrigo. Universidad del Bío-Bío; Chile.
Given two graphs G = (V, EG) and H = (V, EH) over the same set of vertices and given a set of colors C, the impact on H of a coloring c : V ! C of G, denoted I(c), is the number of edges ij 2 EH such that c(i) = c(j). In this setting, the maximum-impact coloring problem asks for a proper coloring of G maximizing the impact I(c) on H. This problem naturally arises in the assignment of classrooms to courses, where it is desirable {but not mandatory{ to assign lectures from the same course to the same classroom. Since the maximum-impact coloring problem is NP-hard, we propose in this work an integer-programming-based approach for tackling this problem. To this end, we present an integer programming formulation and we study the associated polytope. We provide several families of valid inequalities, and we study under which conditions these inequalities dene facets of the associated polytope. Finally, we show computational evidence over real-life instances suggesting that some of these families may be useful in a cutting-plane environment.
description Revista con referato
publishDate 2016
dc.date.none.fl_str_mv 2016
2025-02-05T15:23:27Z
2025-02-05T15:23:27Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Braga, M., Delle Donne, D., Linfati, R. y Marenco, J. (2017). The maximum-impact coloring polytope. International Transactions in Operational Research, 24, 303-324.
0969-6016
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2037
identifier_str_mv Braga, M., Delle Donne, D., Linfati, R. y Marenco, J. (2017). The maximum-impact coloring polytope. International Transactions in Operational Research, 24, 303-324.
0969-6016
url http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2037
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://dx.doi.org/10.1111/itor.12265
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv International Transactions in Operational Research. Ene.-Mar. 2017; 24: 303-324
https://onlinelibrary.wiley.com/toc/14753995/2017/24/1-2
reponame:Repositorio Institucional UNGS
instname:Universidad Nacional de General Sarmiento
reponame_str Repositorio Institucional UNGS
collection Repositorio Institucional UNGS
instname_str Universidad Nacional de General Sarmiento
repository.name.fl_str_mv Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento
repository.mail.fl_str_mv ubyd@campus.ungs.edu.ar
_version_ 1846164336721002496
score 12.375692