The maximum-impact coloring polytope
- Autores
- Braga, Mónica Andrea; Marenco, Javier; Delle Donne, Diego; Linfati, Rodrigo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Revista con referato
Fil: Braga, Mónica. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Marenco, Javier. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Delle Donne, Diego. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Linfati, Rodrigo. Universidad del Bío-Bío; Chile.
Given two graphs G = (V, EG) and H = (V, EH) over the same set of vertices and given a set of colors C, the impact on H of a coloring c : V ! C of G, denoted I(c), is the number of edges ij 2 EH such that c(i) = c(j). In this setting, the maximum-impact coloring problem asks for a proper coloring of G maximizing the impact I(c) on H. This problem naturally arises in the assignment of classrooms to courses, where it is desirable {but not mandatory{ to assign lectures from the same course to the same classroom. Since the maximum-impact coloring problem is NP-hard, we propose in this work an integer-programming-based approach for tackling this problem. To this end, we present an integer programming formulation and we study the associated polytope. We provide several families of valid inequalities, and we study under which conditions these inequalities dene facets of the associated polytope. Finally, we show computational evidence over real-life instances suggesting that some of these families may be useful in a cutting-plane environment. - Fuente
- International Transactions in Operational Research. Ene.-Mar. 2017; 24: 303-324
https://onlinelibrary.wiley.com/toc/14753995/2017/24/1-2 - Materia
-
Coloring
Integer Programming
Facets
Matemáticas - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional de General Sarmiento
- OAI Identificador
- oai:repositorio.ungs.edu.ar:UNGS/2037
Ver los metadatos del registro completo
id |
RIUNGS_e3a55c8e4b07016dbccaf3e47c52aded |
---|---|
oai_identifier_str |
oai:repositorio.ungs.edu.ar:UNGS/2037 |
network_acronym_str |
RIUNGS |
repository_id_str |
|
network_name_str |
Repositorio Institucional UNGS |
spelling |
The maximum-impact coloring polytopeBraga, Mónica AndreaMarenco, JavierDelle Donne, DiegoLinfati, RodrigoColoringInteger ProgrammingFacetsMatemáticasRevista con referatoFil: Braga, Mónica. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Marenco, Javier. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Delle Donne, Diego. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Linfati, Rodrigo. Universidad del Bío-Bío; Chile.Given two graphs G = (V, EG) and H = (V, EH) over the same set of vertices and given a set of colors C, the impact on H of a coloring c : V ! C of G, denoted I(c), is the number of edges ij 2 EH such that c(i) = c(j). In this setting, the maximum-impact coloring problem asks for a proper coloring of G maximizing the impact I(c) on H. This problem naturally arises in the assignment of classrooms to courses, where it is desirable {but not mandatory{ to assign lectures from the same course to the same classroom. Since the maximum-impact coloring problem is NP-hard, we propose in this work an integer-programming-based approach for tackling this problem. To this end, we present an integer programming formulation and we study the associated polytope. We provide several families of valid inequalities, and we study under which conditions these inequalities dene facets of the associated polytope. Finally, we show computational evidence over real-life instances suggesting that some of these families may be useful in a cutting-plane environment.Wiley2025-02-05T15:23:27Z2025-02-05T15:23:27Z2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfBraga, M., Delle Donne, D., Linfati, R. y Marenco, J. (2017). The maximum-impact coloring polytope. International Transactions in Operational Research, 24, 303-324.0969-6016http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2037International Transactions in Operational Research. Ene.-Mar. 2017; 24: 303-324https://onlinelibrary.wiley.com/toc/14753995/2017/24/1-2reponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttp://dx.doi.org/10.1111/itor.12265info:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-10-16T15:29:12Zoai:repositorio.ungs.edu.ar:UNGS/2037instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-10-16 15:29:13.134Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse |
dc.title.none.fl_str_mv |
The maximum-impact coloring polytope |
title |
The maximum-impact coloring polytope |
spellingShingle |
The maximum-impact coloring polytope Braga, Mónica Andrea Coloring Integer Programming Facets Matemáticas |
title_short |
The maximum-impact coloring polytope |
title_full |
The maximum-impact coloring polytope |
title_fullStr |
The maximum-impact coloring polytope |
title_full_unstemmed |
The maximum-impact coloring polytope |
title_sort |
The maximum-impact coloring polytope |
dc.creator.none.fl_str_mv |
Braga, Mónica Andrea Marenco, Javier Delle Donne, Diego Linfati, Rodrigo |
author |
Braga, Mónica Andrea |
author_facet |
Braga, Mónica Andrea Marenco, Javier Delle Donne, Diego Linfati, Rodrigo |
author_role |
author |
author2 |
Marenco, Javier Delle Donne, Diego Linfati, Rodrigo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Coloring Integer Programming Facets Matemáticas |
topic |
Coloring Integer Programming Facets Matemáticas |
dc.description.none.fl_txt_mv |
Revista con referato Fil: Braga, Mónica. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Fil: Marenco, Javier. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Fil: Delle Donne, Diego. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Linfati, Rodrigo. Universidad del Bío-Bío; Chile. Given two graphs G = (V, EG) and H = (V, EH) over the same set of vertices and given a set of colors C, the impact on H of a coloring c : V ! C of G, denoted I(c), is the number of edges ij 2 EH such that c(i) = c(j). In this setting, the maximum-impact coloring problem asks for a proper coloring of G maximizing the impact I(c) on H. This problem naturally arises in the assignment of classrooms to courses, where it is desirable {but not mandatory{ to assign lectures from the same course to the same classroom. Since the maximum-impact coloring problem is NP-hard, we propose in this work an integer-programming-based approach for tackling this problem. To this end, we present an integer programming formulation and we study the associated polytope. We provide several families of valid inequalities, and we study under which conditions these inequalities dene facets of the associated polytope. Finally, we show computational evidence over real-life instances suggesting that some of these families may be useful in a cutting-plane environment. |
description |
Revista con referato |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2025-02-05T15:23:27Z 2025-02-05T15:23:27Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Braga, M., Delle Donne, D., Linfati, R. y Marenco, J. (2017). The maximum-impact coloring polytope. International Transactions in Operational Research, 24, 303-324. 0969-6016 http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2037 |
identifier_str_mv |
Braga, M., Delle Donne, D., Linfati, R. y Marenco, J. (2017). The maximum-impact coloring polytope. International Transactions in Operational Research, 24, 303-324. 0969-6016 |
url |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2037 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://dx.doi.org/10.1111/itor.12265 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
International Transactions in Operational Research. Ene.-Mar. 2017; 24: 303-324 https://onlinelibrary.wiley.com/toc/14753995/2017/24/1-2 reponame:Repositorio Institucional UNGS instname:Universidad Nacional de General Sarmiento |
reponame_str |
Repositorio Institucional UNGS |
collection |
Repositorio Institucional UNGS |
instname_str |
Universidad Nacional de General Sarmiento |
repository.name.fl_str_mv |
Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento |
repository.mail.fl_str_mv |
ubyd@campus.ungs.edu.ar |
_version_ |
1846164336721002496 |
score |
12.375692 |