Polyhedral results for the equitable coloring problem

Autores
Méndez Díaz, Isabel; Nasini, Graciela Leonor; Severin, Daniel Esteban
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we study the polytope associated with a 0/1 integer programming formulation for the Equitable Coloring Problem. We find several families of valid inequalities and derive sufficient conditions in order to be facet-defining inequalities. We also present computational evidence of the effectiveness of including these inequalities as cuts in a Branch & Cut algorithm.
Fil: Méndez Díaz, Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales; Argentina
Fil: Severin, Daniel Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales; Argentina
Materia
BRANCH & CUT
EQUITABLE GRAPH COLORING
INTEGER PROGRAMMING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/191962

id CONICETDig_41d769a6ad556a0526d617cb8714e317
oai_identifier_str oai:ri.conicet.gov.ar:11336/191962
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Polyhedral results for the equitable coloring problemMéndez Díaz, IsabelNasini, Graciela LeonorSeverin, Daniel EstebanBRANCH & CUTEQUITABLE GRAPH COLORINGINTEGER PROGRAMMINGhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we study the polytope associated with a 0/1 integer programming formulation for the Equitable Coloring Problem. We find several families of valid inequalities and derive sufficient conditions in order to be facet-defining inequalities. We also present computational evidence of the effectiveness of including these inequalities as cuts in a Branch & Cut algorithm.Fil: Méndez Díaz, Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales; ArgentinaFil: Severin, Daniel Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales; ArgentinaElsevier2011-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/191962Méndez Díaz, Isabel; Nasini, Graciela Leonor; Severin, Daniel Esteban; Polyhedral results for the equitable coloring problem; Elsevier; Electronic Notes in Discrete Mathematics; 37; 8-2011; 159-1641571-0653CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.endm.2011.05.028info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1571065311000291info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:18Zoai:ri.conicet.gov.ar:11336/191962instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:18.654CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Polyhedral results for the equitable coloring problem
title Polyhedral results for the equitable coloring problem
spellingShingle Polyhedral results for the equitable coloring problem
Méndez Díaz, Isabel
BRANCH & CUT
EQUITABLE GRAPH COLORING
INTEGER PROGRAMMING
title_short Polyhedral results for the equitable coloring problem
title_full Polyhedral results for the equitable coloring problem
title_fullStr Polyhedral results for the equitable coloring problem
title_full_unstemmed Polyhedral results for the equitable coloring problem
title_sort Polyhedral results for the equitable coloring problem
dc.creator.none.fl_str_mv Méndez Díaz, Isabel
Nasini, Graciela Leonor
Severin, Daniel Esteban
author Méndez Díaz, Isabel
author_facet Méndez Díaz, Isabel
Nasini, Graciela Leonor
Severin, Daniel Esteban
author_role author
author2 Nasini, Graciela Leonor
Severin, Daniel Esteban
author2_role author
author
dc.subject.none.fl_str_mv BRANCH & CUT
EQUITABLE GRAPH COLORING
INTEGER PROGRAMMING
topic BRANCH & CUT
EQUITABLE GRAPH COLORING
INTEGER PROGRAMMING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we study the polytope associated with a 0/1 integer programming formulation for the Equitable Coloring Problem. We find several families of valid inequalities and derive sufficient conditions in order to be facet-defining inequalities. We also present computational evidence of the effectiveness of including these inequalities as cuts in a Branch & Cut algorithm.
Fil: Méndez Díaz, Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales; Argentina
Fil: Severin, Daniel Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales; Argentina
description In this work we study the polytope associated with a 0/1 integer programming formulation for the Equitable Coloring Problem. We find several families of valid inequalities and derive sufficient conditions in order to be facet-defining inequalities. We also present computational evidence of the effectiveness of including these inequalities as cuts in a Branch & Cut algorithm.
publishDate 2011
dc.date.none.fl_str_mv 2011-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/191962
Méndez Díaz, Isabel; Nasini, Graciela Leonor; Severin, Daniel Esteban; Polyhedral results for the equitable coloring problem; Elsevier; Electronic Notes in Discrete Mathematics; 37; 8-2011; 159-164
1571-0653
CONICET Digital
CONICET
url http://hdl.handle.net/11336/191962
identifier_str_mv Méndez Díaz, Isabel; Nasini, Graciela Leonor; Severin, Daniel Esteban; Polyhedral results for the equitable coloring problem; Elsevier; Electronic Notes in Discrete Mathematics; 37; 8-2011; 159-164
1571-0653
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.endm.2011.05.028
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1571065311000291
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268592545988608
score 13.13397