Polyhedral results for the equitable coloring problem
- Autores
- Méndez Díaz, Isabel; Nasini, Graciela Leonor; Severin, Daniel Esteban
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we study the polytope associated with a 0/1 integer programming formulation for the Equitable Coloring Problem. We find several families of valid inequalities and derive sufficient conditions in order to be facet-defining inequalities. We also present computational evidence of the effectiveness of including these inequalities as cuts in a Branch & Cut algorithm.
Fil: Méndez Díaz, Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales; Argentina
Fil: Severin, Daniel Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales; Argentina - Materia
-
BRANCH & CUT
EQUITABLE GRAPH COLORING
INTEGER PROGRAMMING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/191962
Ver los metadatos del registro completo
id |
CONICETDig_41d769a6ad556a0526d617cb8714e317 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/191962 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Polyhedral results for the equitable coloring problemMéndez Díaz, IsabelNasini, Graciela LeonorSeverin, Daniel EstebanBRANCH & CUTEQUITABLE GRAPH COLORINGINTEGER PROGRAMMINGhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we study the polytope associated with a 0/1 integer programming formulation for the Equitable Coloring Problem. We find several families of valid inequalities and derive sufficient conditions in order to be facet-defining inequalities. We also present computational evidence of the effectiveness of including these inequalities as cuts in a Branch & Cut algorithm.Fil: Méndez Díaz, Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales; ArgentinaFil: Severin, Daniel Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales; ArgentinaElsevier2011-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/191962Méndez Díaz, Isabel; Nasini, Graciela Leonor; Severin, Daniel Esteban; Polyhedral results for the equitable coloring problem; Elsevier; Electronic Notes in Discrete Mathematics; 37; 8-2011; 159-1641571-0653CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.endm.2011.05.028info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1571065311000291info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:18Zoai:ri.conicet.gov.ar:11336/191962instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:18.654CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Polyhedral results for the equitable coloring problem |
title |
Polyhedral results for the equitable coloring problem |
spellingShingle |
Polyhedral results for the equitable coloring problem Méndez Díaz, Isabel BRANCH & CUT EQUITABLE GRAPH COLORING INTEGER PROGRAMMING |
title_short |
Polyhedral results for the equitable coloring problem |
title_full |
Polyhedral results for the equitable coloring problem |
title_fullStr |
Polyhedral results for the equitable coloring problem |
title_full_unstemmed |
Polyhedral results for the equitable coloring problem |
title_sort |
Polyhedral results for the equitable coloring problem |
dc.creator.none.fl_str_mv |
Méndez Díaz, Isabel Nasini, Graciela Leonor Severin, Daniel Esteban |
author |
Méndez Díaz, Isabel |
author_facet |
Méndez Díaz, Isabel Nasini, Graciela Leonor Severin, Daniel Esteban |
author_role |
author |
author2 |
Nasini, Graciela Leonor Severin, Daniel Esteban |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BRANCH & CUT EQUITABLE GRAPH COLORING INTEGER PROGRAMMING |
topic |
BRANCH & CUT EQUITABLE GRAPH COLORING INTEGER PROGRAMMING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work we study the polytope associated with a 0/1 integer programming formulation for the Equitable Coloring Problem. We find several families of valid inequalities and derive sufficient conditions in order to be facet-defining inequalities. We also present computational evidence of the effectiveness of including these inequalities as cuts in a Branch & Cut algorithm. Fil: Méndez Díaz, Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales; Argentina Fil: Severin, Daniel Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales; Argentina |
description |
In this work we study the polytope associated with a 0/1 integer programming formulation for the Equitable Coloring Problem. We find several families of valid inequalities and derive sufficient conditions in order to be facet-defining inequalities. We also present computational evidence of the effectiveness of including these inequalities as cuts in a Branch & Cut algorithm. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/191962 Méndez Díaz, Isabel; Nasini, Graciela Leonor; Severin, Daniel Esteban; Polyhedral results for the equitable coloring problem; Elsevier; Electronic Notes in Discrete Mathematics; 37; 8-2011; 159-164 1571-0653 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/191962 |
identifier_str_mv |
Méndez Díaz, Isabel; Nasini, Graciela Leonor; Severin, Daniel Esteban; Polyhedral results for the equitable coloring problem; Elsevier; Electronic Notes in Discrete Mathematics; 37; 8-2011; 159-164 1571-0653 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.endm.2011.05.028 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1571065311000291 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268592545988608 |
score |
13.13397 |