An elliptic system with bifurcation parameters on the boundary conditions

Autores
García-Melián, J.; Rossi, J.D.; Sabina de Lis, J.C.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we consider the elliptic system Δ u = a (x) up vq, Δ v = b (x) ur vs in Ω, a smooth bounded domain, with boundary conditions frac(∂ u, ∂ ν) = λ u, frac(∂ v, ∂ ν) = μ v on ∂Ω. Here λ and μ are regarded as parameters and p, s > 1, q, r > 0 verify (p - 1) (s - 1) > q r. We consider the case where a (x) ≥ 0 in Ω and a (x) is allowed to vanish in an interior subdomain Ω0, while b (x) > 0 in over(Ω, -). Our main results include existence of nonnegative nontrivial solutions in the range 0 < λ < λ1 ≤ ∞, μ > 0, where λ1 is characterized by means of an eigenvalue problem, and the uniqueness of such solutions. We also study their asymptotic behavior in all possible cases: as both λ, μ → 0, as λ → λ1 < ∞ for fixed μ (respectively μ → ∞ for fixed λ) and when both λ, μ → ∞ in case λ1 = ∞. © 2009 Elsevier Inc. All rights reserved.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Differ. Equ. 2009;247(3):779-810
Materia
Asymptotic profiles
Bifurcation
Elliptic semilinear systems of competitive type
Sub- and supersolutions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00220396_v247_n3_p779_GarciaMelian

id BDUBAFCEN_da1bd2f91a1cc5d5bb39325fa0980512
oai_identifier_str paperaa:paper_00220396_v247_n3_p779_GarciaMelian
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling An elliptic system with bifurcation parameters on the boundary conditionsGarcía-Melián, J.Rossi, J.D.Sabina de Lis, J.C.Asymptotic profilesBifurcationElliptic semilinear systems of competitive typeSub- and supersolutionsIn this paper we consider the elliptic system Δ u = a (x) up vq, Δ v = b (x) ur vs in Ω, a smooth bounded domain, with boundary conditions frac(∂ u, ∂ ν) = λ u, frac(∂ v, ∂ ν) = μ v on ∂Ω. Here λ and μ are regarded as parameters and p, s &gt; 1, q, r &gt; 0 verify (p - 1) (s - 1) &gt; q r. We consider the case where a (x) ≥ 0 in Ω and a (x) is allowed to vanish in an interior subdomain Ω0, while b (x) &gt; 0 in over(Ω, -). Our main results include existence of nonnegative nontrivial solutions in the range 0 &lt; λ &lt; λ1 ≤ ∞, μ &gt; 0, where λ1 is characterized by means of an eigenvalue problem, and the uniqueness of such solutions. We also study their asymptotic behavior in all possible cases: as both λ, μ → 0, as λ → λ1 &lt; ∞ for fixed μ (respectively μ → ∞ for fixed λ) and when both λ, μ → ∞ in case λ1 = ∞. © 2009 Elsevier Inc. All rights reserved.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00220396_v247_n3_p779_GarciaMelianJ. Differ. Equ. 2009;247(3):779-810reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:58Zpaperaa:paper_00220396_v247_n3_p779_GarciaMelianInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:59.18Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv An elliptic system with bifurcation parameters on the boundary conditions
title An elliptic system with bifurcation parameters on the boundary conditions
spellingShingle An elliptic system with bifurcation parameters on the boundary conditions
García-Melián, J.
Asymptotic profiles
Bifurcation
Elliptic semilinear systems of competitive type
Sub- and supersolutions
title_short An elliptic system with bifurcation parameters on the boundary conditions
title_full An elliptic system with bifurcation parameters on the boundary conditions
title_fullStr An elliptic system with bifurcation parameters on the boundary conditions
title_full_unstemmed An elliptic system with bifurcation parameters on the boundary conditions
title_sort An elliptic system with bifurcation parameters on the boundary conditions
dc.creator.none.fl_str_mv García-Melián, J.
Rossi, J.D.
Sabina de Lis, J.C.
author García-Melián, J.
author_facet García-Melián, J.
Rossi, J.D.
Sabina de Lis, J.C.
author_role author
author2 Rossi, J.D.
Sabina de Lis, J.C.
author2_role author
author
dc.subject.none.fl_str_mv Asymptotic profiles
Bifurcation
Elliptic semilinear systems of competitive type
Sub- and supersolutions
topic Asymptotic profiles
Bifurcation
Elliptic semilinear systems of competitive type
Sub- and supersolutions
dc.description.none.fl_txt_mv In this paper we consider the elliptic system Δ u = a (x) up vq, Δ v = b (x) ur vs in Ω, a smooth bounded domain, with boundary conditions frac(∂ u, ∂ ν) = λ u, frac(∂ v, ∂ ν) = μ v on ∂Ω. Here λ and μ are regarded as parameters and p, s &gt; 1, q, r &gt; 0 verify (p - 1) (s - 1) &gt; q r. We consider the case where a (x) ≥ 0 in Ω and a (x) is allowed to vanish in an interior subdomain Ω0, while b (x) &gt; 0 in over(Ω, -). Our main results include existence of nonnegative nontrivial solutions in the range 0 &lt; λ &lt; λ1 ≤ ∞, μ &gt; 0, where λ1 is characterized by means of an eigenvalue problem, and the uniqueness of such solutions. We also study their asymptotic behavior in all possible cases: as both λ, μ → 0, as λ → λ1 &lt; ∞ for fixed μ (respectively μ → ∞ for fixed λ) and when both λ, μ → ∞ in case λ1 = ∞. © 2009 Elsevier Inc. All rights reserved.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In this paper we consider the elliptic system Δ u = a (x) up vq, Δ v = b (x) ur vs in Ω, a smooth bounded domain, with boundary conditions frac(∂ u, ∂ ν) = λ u, frac(∂ v, ∂ ν) = μ v on ∂Ω. Here λ and μ are regarded as parameters and p, s &gt; 1, q, r &gt; 0 verify (p - 1) (s - 1) &gt; q r. We consider the case where a (x) ≥ 0 in Ω and a (x) is allowed to vanish in an interior subdomain Ω0, while b (x) &gt; 0 in over(Ω, -). Our main results include existence of nonnegative nontrivial solutions in the range 0 &lt; λ &lt; λ1 ≤ ∞, μ &gt; 0, where λ1 is characterized by means of an eigenvalue problem, and the uniqueness of such solutions. We also study their asymptotic behavior in all possible cases: as both λ, μ → 0, as λ → λ1 &lt; ∞ for fixed μ (respectively μ → ∞ for fixed λ) and when both λ, μ → ∞ in case λ1 = ∞. © 2009 Elsevier Inc. All rights reserved.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00220396_v247_n3_p779_GarciaMelian
url http://hdl.handle.net/20.500.12110/paper_00220396_v247_n3_p779_GarciaMelian
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Differ. Equ. 2009;247(3):779-810
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618736373334016
score 13.070432