An elliptic system with bifurcation parameters on the boundary conditions
- Autores
- García-Melián, J.; Rossi, J.D.; Sabina de Lis, J.C.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we consider the elliptic system Δ u = a (x) up vq, Δ v = b (x) ur vs in Ω, a smooth bounded domain, with boundary conditions frac(∂ u, ∂ ν) = λ u, frac(∂ v, ∂ ν) = μ v on ∂Ω. Here λ and μ are regarded as parameters and p, s > 1, q, r > 0 verify (p - 1) (s - 1) > q r. We consider the case where a (x) ≥ 0 in Ω and a (x) is allowed to vanish in an interior subdomain Ω0, while b (x) > 0 in over(Ω, -). Our main results include existence of nonnegative nontrivial solutions in the range 0 < λ < λ1 ≤ ∞, μ > 0, where λ1 is characterized by means of an eigenvalue problem, and the uniqueness of such solutions. We also study their asymptotic behavior in all possible cases: as both λ, μ → 0, as λ → λ1 < ∞ for fixed μ (respectively μ → ∞ for fixed λ) and when both λ, μ → ∞ in case λ1 = ∞. © 2009 Elsevier Inc. All rights reserved.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Differ. Equ. 2009;247(3):779-810
- Materia
-
Asymptotic profiles
Bifurcation
Elliptic semilinear systems of competitive type
Sub- and supersolutions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00220396_v247_n3_p779_GarciaMelian
Ver los metadatos del registro completo
id |
BDUBAFCEN_da1bd2f91a1cc5d5bb39325fa0980512 |
---|---|
oai_identifier_str |
paperaa:paper_00220396_v247_n3_p779_GarciaMelian |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
An elliptic system with bifurcation parameters on the boundary conditionsGarcía-Melián, J.Rossi, J.D.Sabina de Lis, J.C.Asymptotic profilesBifurcationElliptic semilinear systems of competitive typeSub- and supersolutionsIn this paper we consider the elliptic system Δ u = a (x) up vq, Δ v = b (x) ur vs in Ω, a smooth bounded domain, with boundary conditions frac(∂ u, ∂ ν) = λ u, frac(∂ v, ∂ ν) = μ v on ∂Ω. Here λ and μ are regarded as parameters and p, s > 1, q, r > 0 verify (p - 1) (s - 1) > q r. We consider the case where a (x) ≥ 0 in Ω and a (x) is allowed to vanish in an interior subdomain Ω0, while b (x) > 0 in over(Ω, -). Our main results include existence of nonnegative nontrivial solutions in the range 0 < λ < λ1 ≤ ∞, μ > 0, where λ1 is characterized by means of an eigenvalue problem, and the uniqueness of such solutions. We also study their asymptotic behavior in all possible cases: as both λ, μ → 0, as λ → λ1 < ∞ for fixed μ (respectively μ → ∞ for fixed λ) and when both λ, μ → ∞ in case λ1 = ∞. © 2009 Elsevier Inc. All rights reserved.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00220396_v247_n3_p779_GarciaMelianJ. Differ. Equ. 2009;247(3):779-810reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:58Zpaperaa:paper_00220396_v247_n3_p779_GarciaMelianInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:59.18Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
An elliptic system with bifurcation parameters on the boundary conditions |
title |
An elliptic system with bifurcation parameters on the boundary conditions |
spellingShingle |
An elliptic system with bifurcation parameters on the boundary conditions García-Melián, J. Asymptotic profiles Bifurcation Elliptic semilinear systems of competitive type Sub- and supersolutions |
title_short |
An elliptic system with bifurcation parameters on the boundary conditions |
title_full |
An elliptic system with bifurcation parameters on the boundary conditions |
title_fullStr |
An elliptic system with bifurcation parameters on the boundary conditions |
title_full_unstemmed |
An elliptic system with bifurcation parameters on the boundary conditions |
title_sort |
An elliptic system with bifurcation parameters on the boundary conditions |
dc.creator.none.fl_str_mv |
García-Melián, J. Rossi, J.D. Sabina de Lis, J.C. |
author |
García-Melián, J. |
author_facet |
García-Melián, J. Rossi, J.D. Sabina de Lis, J.C. |
author_role |
author |
author2 |
Rossi, J.D. Sabina de Lis, J.C. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Asymptotic profiles Bifurcation Elliptic semilinear systems of competitive type Sub- and supersolutions |
topic |
Asymptotic profiles Bifurcation Elliptic semilinear systems of competitive type Sub- and supersolutions |
dc.description.none.fl_txt_mv |
In this paper we consider the elliptic system Δ u = a (x) up vq, Δ v = b (x) ur vs in Ω, a smooth bounded domain, with boundary conditions frac(∂ u, ∂ ν) = λ u, frac(∂ v, ∂ ν) = μ v on ∂Ω. Here λ and μ are regarded as parameters and p, s > 1, q, r > 0 verify (p - 1) (s - 1) > q r. We consider the case where a (x) ≥ 0 in Ω and a (x) is allowed to vanish in an interior subdomain Ω0, while b (x) > 0 in over(Ω, -). Our main results include existence of nonnegative nontrivial solutions in the range 0 < λ < λ1 ≤ ∞, μ > 0, where λ1 is characterized by means of an eigenvalue problem, and the uniqueness of such solutions. We also study their asymptotic behavior in all possible cases: as both λ, μ → 0, as λ → λ1 < ∞ for fixed μ (respectively μ → ∞ for fixed λ) and when both λ, μ → ∞ in case λ1 = ∞. © 2009 Elsevier Inc. All rights reserved. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
In this paper we consider the elliptic system Δ u = a (x) up vq, Δ v = b (x) ur vs in Ω, a smooth bounded domain, with boundary conditions frac(∂ u, ∂ ν) = λ u, frac(∂ v, ∂ ν) = μ v on ∂Ω. Here λ and μ are regarded as parameters and p, s > 1, q, r > 0 verify (p - 1) (s - 1) > q r. We consider the case where a (x) ≥ 0 in Ω and a (x) is allowed to vanish in an interior subdomain Ω0, while b (x) > 0 in over(Ω, -). Our main results include existence of nonnegative nontrivial solutions in the range 0 < λ < λ1 ≤ ∞, μ > 0, where λ1 is characterized by means of an eigenvalue problem, and the uniqueness of such solutions. We also study their asymptotic behavior in all possible cases: as both λ, μ → 0, as λ → λ1 < ∞ for fixed μ (respectively μ → ∞ for fixed λ) and when both λ, μ → ∞ in case λ1 = ∞. © 2009 Elsevier Inc. All rights reserved. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00220396_v247_n3_p779_GarciaMelian |
url |
http://hdl.handle.net/20.500.12110/paper_00220396_v247_n3_p779_GarciaMelian |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Differ. Equ. 2009;247(3):779-810 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618736373334016 |
score |
13.070432 |