Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics

Autores
Cao Rial, M. T.; Castiñeira, G.; Rodríguez Arós, Á.; Roscani, Sabrina Dina
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we consider a family of three-dimensional problems in thermoelasticity for elliptic membrane shells and study the asymptotic behaviour of the solution when the thickness tends to zero. We fully characterize with strong convergence results the limit as the unique solution of a two-dimensional problem, where the reference domain is the common middle surface of the family of three-dimensional shells. The problems are dynamic and the constitutive thermoelastic law is given by the Duhamel-Neumann relation.
Fil: Cao Rial, M. T.. Universidade da Coruña; España
Fil: Castiñeira, G.. Universidad de Vigo; España
Fil: Rodríguez Arós, Á.. Universidade da Coruña; España
Fil: Roscani, Sabrina Dina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Materia
ASYMPTOTIC ANALYSIS
ELLIPTIC MEMBRANE SHELLS
THERMOELASTODYNAMICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/153307

id CONICETDig_12e4209c57cb15c5b321363b46908066
oai_identifier_str oai:ri.conicet.gov.ar:11336/153307
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Asymptotic Analysis of Elliptic Membrane Shells in ThermoelastodynamicsCao Rial, M. T.Castiñeira, G.Rodríguez Arós, Á.Roscani, Sabrina DinaASYMPTOTIC ANALYSISELLIPTIC MEMBRANE SHELLSTHERMOELASTODYNAMICShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we consider a family of three-dimensional problems in thermoelasticity for elliptic membrane shells and study the asymptotic behaviour of the solution when the thickness tends to zero. We fully characterize with strong convergence results the limit as the unique solution of a two-dimensional problem, where the reference domain is the common middle surface of the family of three-dimensional shells. The problems are dynamic and the constitutive thermoelastic law is given by the Duhamel-Neumann relation.Fil: Cao Rial, M. T.. Universidade da Coruña; EspañaFil: Castiñeira, G.. Universidad de Vigo; EspañaFil: Rodríguez Arós, Á.. Universidade da Coruña; EspañaFil: Roscani, Sabrina Dina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaSpringer2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/153307Cao Rial, M. T.; Castiñeira, G.; Rodríguez Arós, Á.; Roscani, Sabrina Dina; Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics; Springer; Journal Of Elasticity; 143; 2; 3-2021; 385-4090374-35351573-2681CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10659-021-09820-0info:eu-repo/semantics/altIdentifier/doi/10.1007/s10659-021-09820-0info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2012.00621info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:18Zoai:ri.conicet.gov.ar:11336/153307instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:18.536CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics
title Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics
spellingShingle Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics
Cao Rial, M. T.
ASYMPTOTIC ANALYSIS
ELLIPTIC MEMBRANE SHELLS
THERMOELASTODYNAMICS
title_short Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics
title_full Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics
title_fullStr Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics
title_full_unstemmed Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics
title_sort Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics
dc.creator.none.fl_str_mv Cao Rial, M. T.
Castiñeira, G.
Rodríguez Arós, Á.
Roscani, Sabrina Dina
author Cao Rial, M. T.
author_facet Cao Rial, M. T.
Castiñeira, G.
Rodríguez Arós, Á.
Roscani, Sabrina Dina
author_role author
author2 Castiñeira, G.
Rodríguez Arós, Á.
Roscani, Sabrina Dina
author2_role author
author
author
dc.subject.none.fl_str_mv ASYMPTOTIC ANALYSIS
ELLIPTIC MEMBRANE SHELLS
THERMOELASTODYNAMICS
topic ASYMPTOTIC ANALYSIS
ELLIPTIC MEMBRANE SHELLS
THERMOELASTODYNAMICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we consider a family of three-dimensional problems in thermoelasticity for elliptic membrane shells and study the asymptotic behaviour of the solution when the thickness tends to zero. We fully characterize with strong convergence results the limit as the unique solution of a two-dimensional problem, where the reference domain is the common middle surface of the family of three-dimensional shells. The problems are dynamic and the constitutive thermoelastic law is given by the Duhamel-Neumann relation.
Fil: Cao Rial, M. T.. Universidade da Coruña; España
Fil: Castiñeira, G.. Universidad de Vigo; España
Fil: Rodríguez Arós, Á.. Universidade da Coruña; España
Fil: Roscani, Sabrina Dina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
description In this paper we consider a family of three-dimensional problems in thermoelasticity for elliptic membrane shells and study the asymptotic behaviour of the solution when the thickness tends to zero. We fully characterize with strong convergence results the limit as the unique solution of a two-dimensional problem, where the reference domain is the common middle surface of the family of three-dimensional shells. The problems are dynamic and the constitutive thermoelastic law is given by the Duhamel-Neumann relation.
publishDate 2021
dc.date.none.fl_str_mv 2021-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/153307
Cao Rial, M. T.; Castiñeira, G.; Rodríguez Arós, Á.; Roscani, Sabrina Dina; Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics; Springer; Journal Of Elasticity; 143; 2; 3-2021; 385-409
0374-3535
1573-2681
CONICET Digital
CONICET
url http://hdl.handle.net/11336/153307
identifier_str_mv Cao Rial, M. T.; Castiñeira, G.; Rodríguez Arós, Á.; Roscani, Sabrina Dina; Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics; Springer; Journal Of Elasticity; 143; 2; 3-2021; 385-409
0374-3535
1573-2681
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10659-021-09820-0
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10659-021-09820-0
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2012.00621
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613210105184256
score 13.070432