Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics
- Autores
- Cao Rial, M. T.; Castiñeira, G.; Rodríguez Arós, Á.; Roscani, Sabrina Dina
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we consider a family of three-dimensional problems in thermoelasticity for elliptic membrane shells and study the asymptotic behaviour of the solution when the thickness tends to zero. We fully characterize with strong convergence results the limit as the unique solution of a two-dimensional problem, where the reference domain is the common middle surface of the family of three-dimensional shells. The problems are dynamic and the constitutive thermoelastic law is given by the Duhamel-Neumann relation.
Fil: Cao Rial, M. T.. Universidade da Coruña; España
Fil: Castiñeira, G.. Universidad de Vigo; España
Fil: Rodríguez Arós, Á.. Universidade da Coruña; España
Fil: Roscani, Sabrina Dina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina - Materia
-
ASYMPTOTIC ANALYSIS
ELLIPTIC MEMBRANE SHELLS
THERMOELASTODYNAMICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/153307
Ver los metadatos del registro completo
id |
CONICETDig_12e4209c57cb15c5b321363b46908066 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/153307 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Asymptotic Analysis of Elliptic Membrane Shells in ThermoelastodynamicsCao Rial, M. T.Castiñeira, G.Rodríguez Arós, Á.Roscani, Sabrina DinaASYMPTOTIC ANALYSISELLIPTIC MEMBRANE SHELLSTHERMOELASTODYNAMICShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we consider a family of three-dimensional problems in thermoelasticity for elliptic membrane shells and study the asymptotic behaviour of the solution when the thickness tends to zero. We fully characterize with strong convergence results the limit as the unique solution of a two-dimensional problem, where the reference domain is the common middle surface of the family of three-dimensional shells. The problems are dynamic and the constitutive thermoelastic law is given by the Duhamel-Neumann relation.Fil: Cao Rial, M. T.. Universidade da Coruña; EspañaFil: Castiñeira, G.. Universidad de Vigo; EspañaFil: Rodríguez Arós, Á.. Universidade da Coruña; EspañaFil: Roscani, Sabrina Dina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaSpringer2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/153307Cao Rial, M. T.; Castiñeira, G.; Rodríguez Arós, Á.; Roscani, Sabrina Dina; Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics; Springer; Journal Of Elasticity; 143; 2; 3-2021; 385-4090374-35351573-2681CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10659-021-09820-0info:eu-repo/semantics/altIdentifier/doi/10.1007/s10659-021-09820-0info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2012.00621info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:18Zoai:ri.conicet.gov.ar:11336/153307instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:18.536CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics |
title |
Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics |
spellingShingle |
Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics Cao Rial, M. T. ASYMPTOTIC ANALYSIS ELLIPTIC MEMBRANE SHELLS THERMOELASTODYNAMICS |
title_short |
Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics |
title_full |
Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics |
title_fullStr |
Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics |
title_full_unstemmed |
Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics |
title_sort |
Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics |
dc.creator.none.fl_str_mv |
Cao Rial, M. T. Castiñeira, G. Rodríguez Arós, Á. Roscani, Sabrina Dina |
author |
Cao Rial, M. T. |
author_facet |
Cao Rial, M. T. Castiñeira, G. Rodríguez Arós, Á. Roscani, Sabrina Dina |
author_role |
author |
author2 |
Castiñeira, G. Rodríguez Arós, Á. Roscani, Sabrina Dina |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ASYMPTOTIC ANALYSIS ELLIPTIC MEMBRANE SHELLS THERMOELASTODYNAMICS |
topic |
ASYMPTOTIC ANALYSIS ELLIPTIC MEMBRANE SHELLS THERMOELASTODYNAMICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we consider a family of three-dimensional problems in thermoelasticity for elliptic membrane shells and study the asymptotic behaviour of the solution when the thickness tends to zero. We fully characterize with strong convergence results the limit as the unique solution of a two-dimensional problem, where the reference domain is the common middle surface of the family of three-dimensional shells. The problems are dynamic and the constitutive thermoelastic law is given by the Duhamel-Neumann relation. Fil: Cao Rial, M. T.. Universidade da Coruña; España Fil: Castiñeira, G.. Universidad de Vigo; España Fil: Rodríguez Arós, Á.. Universidade da Coruña; España Fil: Roscani, Sabrina Dina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina |
description |
In this paper we consider a family of three-dimensional problems in thermoelasticity for elliptic membrane shells and study the asymptotic behaviour of the solution when the thickness tends to zero. We fully characterize with strong convergence results the limit as the unique solution of a two-dimensional problem, where the reference domain is the common middle surface of the family of three-dimensional shells. The problems are dynamic and the constitutive thermoelastic law is given by the Duhamel-Neumann relation. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/153307 Cao Rial, M. T.; Castiñeira, G.; Rodríguez Arós, Á.; Roscani, Sabrina Dina; Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics; Springer; Journal Of Elasticity; 143; 2; 3-2021; 385-409 0374-3535 1573-2681 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/153307 |
identifier_str_mv |
Cao Rial, M. T.; Castiñeira, G.; Rodríguez Arós, Á.; Roscani, Sabrina Dina; Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics; Springer; Journal Of Elasticity; 143; 2; 3-2021; 385-409 0374-3535 1573-2681 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10659-021-09820-0 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10659-021-09820-0 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2012.00621 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613210105184256 |
score |
13.070432 |