Estructura y propiedades de espacios invariantes por traslaciones en grupos abelianos localmente compactos

Autores
Paternostro, Victoria
Año de publicación
2011
Idioma
inglés
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Cabrelli, Carlos Alberto
Descripción
En esta tesis se estudian los espacios invariantes por traslaciones en el contexto de grupos localmente compactos y abelianos (grupos LCA). Para un grupo LCA G y un subgrupo cerrado H ⊆ G, se introduce la noción de espacio H-invariante o espacio invariante por traslaciones en H. En el caso en que H es un subgrupo discreto y numerable de G, se muestra que el concepto de función rango y las técnicas de fibración son válidos en este contexto. Combinando estas dos herramientas, se prueba una caracterización de los espacios H-invariantes en término de las fibras de sus elementos. Como consecuencia, se obtienen caracterizaciones de marcos y bases de Riesz de estos espacios, extendiendo así resultados previos y conocidos para el caso R y el reticulado Z. Por otro lado, se estudia el problema de la extra invariancia de los espacios H-invariantes. Los resultados obtenidos de la extra invariancia establecen condiciones necesarias y suficientes para que un espacio H-invariante sea además invariante por traslaciones en un subgrupo cerrado M de G que contiene a H. También, se prueba que dado un subgrupo cerrado M de G que contiene a H existe un espacio H-invariante V que es exactamente M-invariante. Es decir, V no es invariante por traslaciones en ningún otro subgrupo M que contiene a M. Además, se obtienen estimaciones de los tamaños de los soportes de la transformada de Fourier de los generadores de los espacios H-invariantes en relación a su M-invariancia. Finalmente, se investigan los subespacios de L2 (G) que son invariantes por traslaciones en un subgrupo K de G y también invariantes por modulaciones en Λ, siendo Λ un subgrupo del grupo dual de G. Se prueba una caracterización de estos espacio para el caso en que K y Λ son discretos.
In this thesis we study shift invariant spaces in the context of locally compact abelian (LCA) groups. For G an LCA group and H ⊆ G a closed subgroup of G we introduce the notion of H-invariant space or shift invariant space under translations in H. In case when H is a countable discrete subgroup of G, we show that the concept of range functions and the techniques of fiberization are valid in this context. Combining these tools, we provide a characterization for H-invariant spaces in terms of the fibers of its elements. As a consequence, we prove characterizations of frames and Riesz bases of these spaces extending previous results that were known for the classical case of Rd and the lattice Zd . On the other hand, we study the problem of extra invariance of H-invariant spaces. Our results of extra invariance state several necessary and sufficient conditions for an H- invariant spaces to be invariant along translations in a closed subgroup of G, M, containing H. In addition we show that for each closed subgroup M of G which contains H there exists an H-invariant space V that is exactly M-invariant. That is, V is not invariant under any other subgroup M ′ containing M. We also obtain estimates on the support of the Fourier transform of the generators of the H-invariant spaces, related to its M-invariance. Lastly, we investigate the structure of those closed subspace of L2 (G) which are invari- ant by translations along K and also invariant under modulations in Λ, begin K and Λ closed subgroups of G and the dual group of G respectively. We obtain a characterization of these spaces when K and Λ are discrete.
Fil: Paternostro, Victoria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Materia
ESPACIOS INVARIANTES POR TRASLACIONES ENTERAS
ESPACIOS INVARIANTES POR TRASLACIONES
GRUPOS LCA
FUNCIONES RANGO
FIBRAS
ESPACIOS INVARIANTES POR MODULACIONES Y TRASLACIONES
SHIFT-INVARIANT SPACE
TRANSLATION INVARIANT SPACE
LCA GROUPS
RANGE FUNCTION
FIBERS
SHIFT-MODULATION INVARIANT SPACE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
tesis:tesis_n5012_Paternostro

id BDUBAFCEN_d037c48dc5a149d46bb5cd09909593ae
oai_identifier_str tesis:tesis_n5012_Paternostro
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Estructura y propiedades de espacios invariantes por traslaciones en grupos abelianos localmente compactosStructure and properties of shift invariant spaces on locally compact abelian groupsPaternostro, VictoriaESPACIOS INVARIANTES POR TRASLACIONES ENTERASESPACIOS INVARIANTES POR TRASLACIONESGRUPOS LCAFUNCIONES RANGOFIBRASESPACIOS INVARIANTES POR MODULACIONES Y TRASLACIONESSHIFT-INVARIANT SPACETRANSLATION INVARIANT SPACELCA GROUPSRANGE FUNCTIONFIBERSSHIFT-MODULATION INVARIANT SPACEEn esta tesis se estudian los espacios invariantes por traslaciones en el contexto de grupos localmente compactos y abelianos (grupos LCA). Para un grupo LCA G y un subgrupo cerrado H ⊆ G, se introduce la noción de espacio H-invariante o espacio invariante por traslaciones en H. En el caso en que H es un subgrupo discreto y numerable de G, se muestra que el concepto de función rango y las técnicas de fibración son válidos en este contexto. Combinando estas dos herramientas, se prueba una caracterización de los espacios H-invariantes en término de las fibras de sus elementos. Como consecuencia, se obtienen caracterizaciones de marcos y bases de Riesz de estos espacios, extendiendo así resultados previos y conocidos para el caso R y el reticulado Z. Por otro lado, se estudia el problema de la extra invariancia de los espacios H-invariantes. Los resultados obtenidos de la extra invariancia establecen condiciones necesarias y suficientes para que un espacio H-invariante sea además invariante por traslaciones en un subgrupo cerrado M de G que contiene a H. También, se prueba que dado un subgrupo cerrado M de G que contiene a H existe un espacio H-invariante V que es exactamente M-invariante. Es decir, V no es invariante por traslaciones en ningún otro subgrupo M que contiene a M. Además, se obtienen estimaciones de los tamaños de los soportes de la transformada de Fourier de los generadores de los espacios H-invariantes en relación a su M-invariancia. Finalmente, se investigan los subespacios de L2 (G) que son invariantes por traslaciones en un subgrupo K de G y también invariantes por modulaciones en Λ, siendo Λ un subgrupo del grupo dual de G. Se prueba una caracterización de estos espacio para el caso en que K y Λ son discretos.In this thesis we study shift invariant spaces in the context of locally compact abelian (LCA) groups. For G an LCA group and H ⊆ G a closed subgroup of G we introduce the notion of H-invariant space or shift invariant space under translations in H. In case when H is a countable discrete subgroup of G, we show that the concept of range functions and the techniques of fiberization are valid in this context. Combining these tools, we provide a characterization for H-invariant spaces in terms of the fibers of its elements. As a consequence, we prove characterizations of frames and Riesz bases of these spaces extending previous results that were known for the classical case of Rd and the lattice Zd . On the other hand, we study the problem of extra invariance of H-invariant spaces. Our results of extra invariance state several necessary and sufficient conditions for an H- invariant spaces to be invariant along translations in a closed subgroup of G, M, containing H. In addition we show that for each closed subgroup M of G which contains H there exists an H-invariant space V that is exactly M-invariant. That is, V is not invariant under any other subgroup M ′ containing M. We also obtain estimates on the support of the Fourier transform of the generators of the H-invariant spaces, related to its M-invariance. Lastly, we investigate the structure of those closed subspace of L2 (G) which are invari- ant by translations along K and also invariant under modulations in Λ, begin K and Λ closed subgroups of G and the dual group of G respectively. We obtain a characterization of these spaces when K and Λ are discrete.Fil: Paternostro, Victoria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesCabrelli, Carlos Alberto2011info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://hdl.handle.net/20.500.12110/tesis_n5012_Paternostroenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-10-16T09:29:39Ztesis:tesis_n5012_PaternostroInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:29:40.266Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Estructura y propiedades de espacios invariantes por traslaciones en grupos abelianos localmente compactos
Structure and properties of shift invariant spaces on locally compact abelian groups
title Estructura y propiedades de espacios invariantes por traslaciones en grupos abelianos localmente compactos
spellingShingle Estructura y propiedades de espacios invariantes por traslaciones en grupos abelianos localmente compactos
Paternostro, Victoria
ESPACIOS INVARIANTES POR TRASLACIONES ENTERAS
ESPACIOS INVARIANTES POR TRASLACIONES
GRUPOS LCA
FUNCIONES RANGO
FIBRAS
ESPACIOS INVARIANTES POR MODULACIONES Y TRASLACIONES
SHIFT-INVARIANT SPACE
TRANSLATION INVARIANT SPACE
LCA GROUPS
RANGE FUNCTION
FIBERS
SHIFT-MODULATION INVARIANT SPACE
title_short Estructura y propiedades de espacios invariantes por traslaciones en grupos abelianos localmente compactos
title_full Estructura y propiedades de espacios invariantes por traslaciones en grupos abelianos localmente compactos
title_fullStr Estructura y propiedades de espacios invariantes por traslaciones en grupos abelianos localmente compactos
title_full_unstemmed Estructura y propiedades de espacios invariantes por traslaciones en grupos abelianos localmente compactos
title_sort Estructura y propiedades de espacios invariantes por traslaciones en grupos abelianos localmente compactos
dc.creator.none.fl_str_mv Paternostro, Victoria
author Paternostro, Victoria
author_facet Paternostro, Victoria
author_role author
dc.contributor.none.fl_str_mv Cabrelli, Carlos Alberto
dc.subject.none.fl_str_mv ESPACIOS INVARIANTES POR TRASLACIONES ENTERAS
ESPACIOS INVARIANTES POR TRASLACIONES
GRUPOS LCA
FUNCIONES RANGO
FIBRAS
ESPACIOS INVARIANTES POR MODULACIONES Y TRASLACIONES
SHIFT-INVARIANT SPACE
TRANSLATION INVARIANT SPACE
LCA GROUPS
RANGE FUNCTION
FIBERS
SHIFT-MODULATION INVARIANT SPACE
topic ESPACIOS INVARIANTES POR TRASLACIONES ENTERAS
ESPACIOS INVARIANTES POR TRASLACIONES
GRUPOS LCA
FUNCIONES RANGO
FIBRAS
ESPACIOS INVARIANTES POR MODULACIONES Y TRASLACIONES
SHIFT-INVARIANT SPACE
TRANSLATION INVARIANT SPACE
LCA GROUPS
RANGE FUNCTION
FIBERS
SHIFT-MODULATION INVARIANT SPACE
dc.description.none.fl_txt_mv En esta tesis se estudian los espacios invariantes por traslaciones en el contexto de grupos localmente compactos y abelianos (grupos LCA). Para un grupo LCA G y un subgrupo cerrado H ⊆ G, se introduce la noción de espacio H-invariante o espacio invariante por traslaciones en H. En el caso en que H es un subgrupo discreto y numerable de G, se muestra que el concepto de función rango y las técnicas de fibración son válidos en este contexto. Combinando estas dos herramientas, se prueba una caracterización de los espacios H-invariantes en término de las fibras de sus elementos. Como consecuencia, se obtienen caracterizaciones de marcos y bases de Riesz de estos espacios, extendiendo así resultados previos y conocidos para el caso R y el reticulado Z. Por otro lado, se estudia el problema de la extra invariancia de los espacios H-invariantes. Los resultados obtenidos de la extra invariancia establecen condiciones necesarias y suficientes para que un espacio H-invariante sea además invariante por traslaciones en un subgrupo cerrado M de G que contiene a H. También, se prueba que dado un subgrupo cerrado M de G que contiene a H existe un espacio H-invariante V que es exactamente M-invariante. Es decir, V no es invariante por traslaciones en ningún otro subgrupo M que contiene a M. Además, se obtienen estimaciones de los tamaños de los soportes de la transformada de Fourier de los generadores de los espacios H-invariantes en relación a su M-invariancia. Finalmente, se investigan los subespacios de L2 (G) que son invariantes por traslaciones en un subgrupo K de G y también invariantes por modulaciones en Λ, siendo Λ un subgrupo del grupo dual de G. Se prueba una caracterización de estos espacio para el caso en que K y Λ son discretos.
In this thesis we study shift invariant spaces in the context of locally compact abelian (LCA) groups. For G an LCA group and H ⊆ G a closed subgroup of G we introduce the notion of H-invariant space or shift invariant space under translations in H. In case when H is a countable discrete subgroup of G, we show that the concept of range functions and the techniques of fiberization are valid in this context. Combining these tools, we provide a characterization for H-invariant spaces in terms of the fibers of its elements. As a consequence, we prove characterizations of frames and Riesz bases of these spaces extending previous results that were known for the classical case of Rd and the lattice Zd . On the other hand, we study the problem of extra invariance of H-invariant spaces. Our results of extra invariance state several necessary and sufficient conditions for an H- invariant spaces to be invariant along translations in a closed subgroup of G, M, containing H. In addition we show that for each closed subgroup M of G which contains H there exists an H-invariant space V that is exactly M-invariant. That is, V is not invariant under any other subgroup M ′ containing M. We also obtain estimates on the support of the Fourier transform of the generators of the H-invariant spaces, related to its M-invariance. Lastly, we investigate the structure of those closed subspace of L2 (G) which are invari- ant by translations along K and also invariant under modulations in Λ, begin K and Λ closed subgroups of G and the dual group of G respectively. We obtain a characterization of these spaces when K and Λ are discrete.
Fil: Paternostro, Victoria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description En esta tesis se estudian los espacios invariantes por traslaciones en el contexto de grupos localmente compactos y abelianos (grupos LCA). Para un grupo LCA G y un subgrupo cerrado H ⊆ G, se introduce la noción de espacio H-invariante o espacio invariante por traslaciones en H. En el caso en que H es un subgrupo discreto y numerable de G, se muestra que el concepto de función rango y las técnicas de fibración son válidos en este contexto. Combinando estas dos herramientas, se prueba una caracterización de los espacios H-invariantes en término de las fibras de sus elementos. Como consecuencia, se obtienen caracterizaciones de marcos y bases de Riesz de estos espacios, extendiendo así resultados previos y conocidos para el caso R y el reticulado Z. Por otro lado, se estudia el problema de la extra invariancia de los espacios H-invariantes. Los resultados obtenidos de la extra invariancia establecen condiciones necesarias y suficientes para que un espacio H-invariante sea además invariante por traslaciones en un subgrupo cerrado M de G que contiene a H. También, se prueba que dado un subgrupo cerrado M de G que contiene a H existe un espacio H-invariante V que es exactamente M-invariante. Es decir, V no es invariante por traslaciones en ningún otro subgrupo M que contiene a M. Además, se obtienen estimaciones de los tamaños de los soportes de la transformada de Fourier de los generadores de los espacios H-invariantes en relación a su M-invariancia. Finalmente, se investigan los subespacios de L2 (G) que son invariantes por traslaciones en un subgrupo K de G y también invariantes por modulaciones en Λ, siendo Λ un subgrupo del grupo dual de G. Se prueba una caracterización de estos espacio para el caso en que K y Λ son discretos.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv https://hdl.handle.net/20.500.12110/tesis_n5012_Paternostro
url https://hdl.handle.net/20.500.12110/tesis_n5012_Paternostro
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
dc.source.none.fl_str_mv reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1846142836348551168
score 12.712165