Extra invariance of shift-invariant spaces on LCA groups

Autores
Anastasio, M.; Cabrelli, C.; Paternostro, V.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This article generalizes recent results in the extra invariance for shift-invariant spaces to the context of LCA groups. Let G be a locally compact abelian (LCA) group and K a closed subgroup of G. A closed subspace of L2(G) is called K-invariant if it is invariant under translations by elements of K. Assume now that H is a countable uniform lattice in G and M is any closed subgroup of G containing H. In this article we study necessary and sufficient conditions for an H-invariant space to be M-invariant. As a consequence of our results we prove that for each closed subgroup M of G containing the lattice H, there exists an H-invariant space S that is exactly M-invariant. That is, S is not invariant under any other subgroup M' containing H. We also obtain estimates on the support of the Fourier transform of the generators of the H-invariant space, related to its M-invariance. © 2010 Elsevier Inc.
Fil:Anastasio, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Paternostro, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Math. Anal. Appl. 2010;370(2):530-537
Materia
Fiber spaces
LCA groups
Range functions
Shift-invariant space
Translation invariant space
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0022247X_v370_n2_p530_Anastasio

id BDUBAFCEN_444c5e93a329a1edf8eb5771b394269d
oai_identifier_str paperaa:paper_0022247X_v370_n2_p530_Anastasio
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Extra invariance of shift-invariant spaces on LCA groupsAnastasio, M.Cabrelli, C.Paternostro, V.Fiber spacesLCA groupsRange functionsShift-invariant spaceTranslation invariant spaceThis article generalizes recent results in the extra invariance for shift-invariant spaces to the context of LCA groups. Let G be a locally compact abelian (LCA) group and K a closed subgroup of G. A closed subspace of L2(G) is called K-invariant if it is invariant under translations by elements of K. Assume now that H is a countable uniform lattice in G and M is any closed subgroup of G containing H. In this article we study necessary and sufficient conditions for an H-invariant space to be M-invariant. As a consequence of our results we prove that for each closed subgroup M of G containing the lattice H, there exists an H-invariant space S that is exactly M-invariant. That is, S is not invariant under any other subgroup M' containing H. We also obtain estimates on the support of the Fourier transform of the generators of the H-invariant space, related to its M-invariance. © 2010 Elsevier Inc.Fil:Anastasio, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Paternostro, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v370_n2_p530_AnastasioJ. Math. Anal. Appl. 2010;370(2):530-537reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-16T09:30:09Zpaperaa:paper_0022247X_v370_n2_p530_AnastasioInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:30:10.915Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Extra invariance of shift-invariant spaces on LCA groups
title Extra invariance of shift-invariant spaces on LCA groups
spellingShingle Extra invariance of shift-invariant spaces on LCA groups
Anastasio, M.
Fiber spaces
LCA groups
Range functions
Shift-invariant space
Translation invariant space
title_short Extra invariance of shift-invariant spaces on LCA groups
title_full Extra invariance of shift-invariant spaces on LCA groups
title_fullStr Extra invariance of shift-invariant spaces on LCA groups
title_full_unstemmed Extra invariance of shift-invariant spaces on LCA groups
title_sort Extra invariance of shift-invariant spaces on LCA groups
dc.creator.none.fl_str_mv Anastasio, M.
Cabrelli, C.
Paternostro, V.
author Anastasio, M.
author_facet Anastasio, M.
Cabrelli, C.
Paternostro, V.
author_role author
author2 Cabrelli, C.
Paternostro, V.
author2_role author
author
dc.subject.none.fl_str_mv Fiber spaces
LCA groups
Range functions
Shift-invariant space
Translation invariant space
topic Fiber spaces
LCA groups
Range functions
Shift-invariant space
Translation invariant space
dc.description.none.fl_txt_mv This article generalizes recent results in the extra invariance for shift-invariant spaces to the context of LCA groups. Let G be a locally compact abelian (LCA) group and K a closed subgroup of G. A closed subspace of L2(G) is called K-invariant if it is invariant under translations by elements of K. Assume now that H is a countable uniform lattice in G and M is any closed subgroup of G containing H. In this article we study necessary and sufficient conditions for an H-invariant space to be M-invariant. As a consequence of our results we prove that for each closed subgroup M of G containing the lattice H, there exists an H-invariant space S that is exactly M-invariant. That is, S is not invariant under any other subgroup M' containing H. We also obtain estimates on the support of the Fourier transform of the generators of the H-invariant space, related to its M-invariance. © 2010 Elsevier Inc.
Fil:Anastasio, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Paternostro, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description This article generalizes recent results in the extra invariance for shift-invariant spaces to the context of LCA groups. Let G be a locally compact abelian (LCA) group and K a closed subgroup of G. A closed subspace of L2(G) is called K-invariant if it is invariant under translations by elements of K. Assume now that H is a countable uniform lattice in G and M is any closed subgroup of G containing H. In this article we study necessary and sufficient conditions for an H-invariant space to be M-invariant. As a consequence of our results we prove that for each closed subgroup M of G containing the lattice H, there exists an H-invariant space S that is exactly M-invariant. That is, S is not invariant under any other subgroup M' containing H. We also obtain estimates on the support of the Fourier transform of the generators of the H-invariant space, related to its M-invariance. © 2010 Elsevier Inc.
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0022247X_v370_n2_p530_Anastasio
url http://hdl.handle.net/20.500.12110/paper_0022247X_v370_n2_p530_Anastasio
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Math. Anal. Appl. 2010;370(2):530-537
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1846142846515544065
score 12.712165