Extra invariance of shift-invariant spaces on LCA groups
- Autores
- Anastasio, M.; Cabrelli, C.; Paternostro, V.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This article generalizes recent results in the extra invariance for shift-invariant spaces to the context of LCA groups. Let G be a locally compact abelian (LCA) group and K a closed subgroup of G. A closed subspace of L2(G) is called K-invariant if it is invariant under translations by elements of K. Assume now that H is a countable uniform lattice in G and M is any closed subgroup of G containing H. In this article we study necessary and sufficient conditions for an H-invariant space to be M-invariant. As a consequence of our results we prove that for each closed subgroup M of G containing the lattice H, there exists an H-invariant space S that is exactly M-invariant. That is, S is not invariant under any other subgroup M' containing H. We also obtain estimates on the support of the Fourier transform of the generators of the H-invariant space, related to its M-invariance. © 2010 Elsevier Inc.
Fil:Anastasio, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Paternostro, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Anal. Appl. 2010;370(2):530-537
- Materia
-
Fiber spaces
LCA groups
Range functions
Shift-invariant space
Translation invariant space - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0022247X_v370_n2_p530_Anastasio
Ver los metadatos del registro completo
id |
BDUBAFCEN_444c5e93a329a1edf8eb5771b394269d |
---|---|
oai_identifier_str |
paperaa:paper_0022247X_v370_n2_p530_Anastasio |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Extra invariance of shift-invariant spaces on LCA groupsAnastasio, M.Cabrelli, C.Paternostro, V.Fiber spacesLCA groupsRange functionsShift-invariant spaceTranslation invariant spaceThis article generalizes recent results in the extra invariance for shift-invariant spaces to the context of LCA groups. Let G be a locally compact abelian (LCA) group and K a closed subgroup of G. A closed subspace of L2(G) is called K-invariant if it is invariant under translations by elements of K. Assume now that H is a countable uniform lattice in G and M is any closed subgroup of G containing H. In this article we study necessary and sufficient conditions for an H-invariant space to be M-invariant. As a consequence of our results we prove that for each closed subgroup M of G containing the lattice H, there exists an H-invariant space S that is exactly M-invariant. That is, S is not invariant under any other subgroup M' containing H. We also obtain estimates on the support of the Fourier transform of the generators of the H-invariant space, related to its M-invariance. © 2010 Elsevier Inc.Fil:Anastasio, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Paternostro, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v370_n2_p530_AnastasioJ. Math. Anal. Appl. 2010;370(2):530-537reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-16T09:30:09Zpaperaa:paper_0022247X_v370_n2_p530_AnastasioInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:30:10.915Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Extra invariance of shift-invariant spaces on LCA groups |
title |
Extra invariance of shift-invariant spaces on LCA groups |
spellingShingle |
Extra invariance of shift-invariant spaces on LCA groups Anastasio, M. Fiber spaces LCA groups Range functions Shift-invariant space Translation invariant space |
title_short |
Extra invariance of shift-invariant spaces on LCA groups |
title_full |
Extra invariance of shift-invariant spaces on LCA groups |
title_fullStr |
Extra invariance of shift-invariant spaces on LCA groups |
title_full_unstemmed |
Extra invariance of shift-invariant spaces on LCA groups |
title_sort |
Extra invariance of shift-invariant spaces on LCA groups |
dc.creator.none.fl_str_mv |
Anastasio, M. Cabrelli, C. Paternostro, V. |
author |
Anastasio, M. |
author_facet |
Anastasio, M. Cabrelli, C. Paternostro, V. |
author_role |
author |
author2 |
Cabrelli, C. Paternostro, V. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Fiber spaces LCA groups Range functions Shift-invariant space Translation invariant space |
topic |
Fiber spaces LCA groups Range functions Shift-invariant space Translation invariant space |
dc.description.none.fl_txt_mv |
This article generalizes recent results in the extra invariance for shift-invariant spaces to the context of LCA groups. Let G be a locally compact abelian (LCA) group and K a closed subgroup of G. A closed subspace of L2(G) is called K-invariant if it is invariant under translations by elements of K. Assume now that H is a countable uniform lattice in G and M is any closed subgroup of G containing H. In this article we study necessary and sufficient conditions for an H-invariant space to be M-invariant. As a consequence of our results we prove that for each closed subgroup M of G containing the lattice H, there exists an H-invariant space S that is exactly M-invariant. That is, S is not invariant under any other subgroup M' containing H. We also obtain estimates on the support of the Fourier transform of the generators of the H-invariant space, related to its M-invariance. © 2010 Elsevier Inc. Fil:Anastasio, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Paternostro, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
This article generalizes recent results in the extra invariance for shift-invariant spaces to the context of LCA groups. Let G be a locally compact abelian (LCA) group and K a closed subgroup of G. A closed subspace of L2(G) is called K-invariant if it is invariant under translations by elements of K. Assume now that H is a countable uniform lattice in G and M is any closed subgroup of G containing H. In this article we study necessary and sufficient conditions for an H-invariant space to be M-invariant. As a consequence of our results we prove that for each closed subgroup M of G containing the lattice H, there exists an H-invariant space S that is exactly M-invariant. That is, S is not invariant under any other subgroup M' containing H. We also obtain estimates on the support of the Fourier transform of the generators of the H-invariant space, related to its M-invariance. © 2010 Elsevier Inc. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0022247X_v370_n2_p530_Anastasio |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v370_n2_p530_Anastasio |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Math. Anal. Appl. 2010;370(2):530-537 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1846142846515544065 |
score |
12.712165 |