Quantum analogues of Richardson varieties in the grassmannian and their toric degeneration
- Autores
- Rigal, L.; Zadunaisky, P.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the present paper, we are interested in natural quantum analogues of Richardson varieties in the type A grassmannians. To be more precise, the objects that we investigate are quantum analogues of the homogeneous coordinate rings of Richardson varieties which appear naturally in the theory of quantum groups. Our point of view, here, is geometric: we are interested in the regularity properties of these non-commutative varieties, such as their irreducibility, normality, Cohen-Macaulayness... in the spirit of non-commutative algebraic geometry. A major step in our approach is to show that these algebras have the structure of an algebra with a straightening law. From this, it follows that they degenerate to some quantum analogues of toric varieties. © 2012 Elsevier Inc.
- Fuente
- J. Algebra 2012;372:293-317
- Materia
-
Cohen-Macaulay
Degeneration
Gorenstein
Quantum grassmannians
Quantum Richardson varieties
Quantum toric varieties
Standard monomials
Straightening laws - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00218693_v372_n_p293_Rigal
Ver los metadatos del registro completo
id |
BDUBAFCEN_9803c3d8cd10144bdcc0ad00c6e35b2c |
---|---|
oai_identifier_str |
paperaa:paper_00218693_v372_n_p293_Rigal |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Quantum analogues of Richardson varieties in the grassmannian and their toric degenerationRigal, L.Zadunaisky, P.Cohen-MacaulayDegenerationGorensteinQuantum grassmanniansQuantum Richardson varietiesQuantum toric varietiesStandard monomialsStraightening lawsIn the present paper, we are interested in natural quantum analogues of Richardson varieties in the type A grassmannians. To be more precise, the objects that we investigate are quantum analogues of the homogeneous coordinate rings of Richardson varieties which appear naturally in the theory of quantum groups. Our point of view, here, is geometric: we are interested in the regularity properties of these non-commutative varieties, such as their irreducibility, normality, Cohen-Macaulayness... in the spirit of non-commutative algebraic geometry. A major step in our approach is to show that these algebras have the structure of an algebra with a straightening law. From this, it follows that they degenerate to some quantum analogues of toric varieties. © 2012 Elsevier Inc.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00218693_v372_n_p293_RigalJ. Algebra 2012;372:293-317reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-23T11:18:15Zpaperaa:paper_00218693_v372_n_p293_RigalInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-23 11:18:17.146Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Quantum analogues of Richardson varieties in the grassmannian and their toric degeneration |
title |
Quantum analogues of Richardson varieties in the grassmannian and their toric degeneration |
spellingShingle |
Quantum analogues of Richardson varieties in the grassmannian and their toric degeneration Rigal, L. Cohen-Macaulay Degeneration Gorenstein Quantum grassmannians Quantum Richardson varieties Quantum toric varieties Standard monomials Straightening laws |
title_short |
Quantum analogues of Richardson varieties in the grassmannian and their toric degeneration |
title_full |
Quantum analogues of Richardson varieties in the grassmannian and their toric degeneration |
title_fullStr |
Quantum analogues of Richardson varieties in the grassmannian and their toric degeneration |
title_full_unstemmed |
Quantum analogues of Richardson varieties in the grassmannian and their toric degeneration |
title_sort |
Quantum analogues of Richardson varieties in the grassmannian and their toric degeneration |
dc.creator.none.fl_str_mv |
Rigal, L. Zadunaisky, P. |
author |
Rigal, L. |
author_facet |
Rigal, L. Zadunaisky, P. |
author_role |
author |
author2 |
Zadunaisky, P. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Cohen-Macaulay Degeneration Gorenstein Quantum grassmannians Quantum Richardson varieties Quantum toric varieties Standard monomials Straightening laws |
topic |
Cohen-Macaulay Degeneration Gorenstein Quantum grassmannians Quantum Richardson varieties Quantum toric varieties Standard monomials Straightening laws |
dc.description.none.fl_txt_mv |
In the present paper, we are interested in natural quantum analogues of Richardson varieties in the type A grassmannians. To be more precise, the objects that we investigate are quantum analogues of the homogeneous coordinate rings of Richardson varieties which appear naturally in the theory of quantum groups. Our point of view, here, is geometric: we are interested in the regularity properties of these non-commutative varieties, such as their irreducibility, normality, Cohen-Macaulayness... in the spirit of non-commutative algebraic geometry. A major step in our approach is to show that these algebras have the structure of an algebra with a straightening law. From this, it follows that they degenerate to some quantum analogues of toric varieties. © 2012 Elsevier Inc. |
description |
In the present paper, we are interested in natural quantum analogues of Richardson varieties in the type A grassmannians. To be more precise, the objects that we investigate are quantum analogues of the homogeneous coordinate rings of Richardson varieties which appear naturally in the theory of quantum groups. Our point of view, here, is geometric: we are interested in the regularity properties of these non-commutative varieties, such as their irreducibility, normality, Cohen-Macaulayness... in the spirit of non-commutative algebraic geometry. A major step in our approach is to show that these algebras have the structure of an algebra with a straightening law. From this, it follows that they degenerate to some quantum analogues of toric varieties. © 2012 Elsevier Inc. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00218693_v372_n_p293_Rigal |
url |
http://hdl.handle.net/20.500.12110/paper_00218693_v372_n_p293_Rigal |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Algebra 2012;372:293-317 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1846784876284477440 |
score |
12.718478 |