Aspectos algorítmicos de geometría semialgebraica
- Autores
- Perrucci, Daniel
- Año de publicación
- 2008
- Idioma
- español castellano
- Tipo de recurso
- tesis doctoral
- Estado
- versión publicada
- Colaborador/a o director/a de tesis
- Sabia, Juan
Jerónimo, Gabriela Tali - Descripción
- Esta tesis versa sobre distintos aspectos algorítmicos de geometría semialgebraica; más concretamente, sobre la resolución efectiva de sistemas de ecuaciones e inecuaciones polinomiales sobre el cuerpo de los números reales. El trabajo se encuentra dividido en tres capítulos en los que se consideran problemas encuadrados en este marco general. En el primer capítulo, estudiamos cotas inferiores de complejidad para los algoritmos de resolución de ecuaciones polinomiales sobre los reales. Probamos resultados relacionados con la intratabilidad tanto de decidir la existencia como de aproximar las raíces reales para polinomios univariados con coeficientes enteros codificados vía straight-line programs. En el segundo capítulo presentamos nuevos métodos probabilísticos para decidir la existencia de soluciones de un sistema de ecuaciones e inecuaciones polinomiales sobre los reales y para encontrar puntos en el conjunto de soluciones de estos sistemas. La complejidad de estos métodos mejora la de los algoritmos anteriores conocidos que resuelven el mismo problema. Finalmente, en el tercer capítulo estudiamos un problema proveniente de la teoría de juegos que se modela mediante sistemas de ecuaciones e inecuaciones polinomiales sobre los reales. Para tratar con estos sistemas, desarrollamos métodos específicos de manera de aprovechar las particularidades que presentan.
This thesis deals with different algorithmic aspects in semialgebraic geometry; more precisely, with the effective resolution of polynomial systems of equations and inequalities over the real numbers. The thesis is divided into three chapters in which problems within this general frame are considered. In the first chapter, we study lower bounds for the complexity of algorithms solving polynomial equation systems over the real numbers. We prove some results related to the intractability of both the problem of deciding the existence of real roots and the problem of approximating real roots of univariate polynomials with integer coefficients encoded by straight-line programs. In the second chapter, we present new probabilistic methods to decide the existence of solutions to polynomial systems of equations and inequalities over the real numbers and to find points in the solution sets of these systems. The complexity of these methods is lower than the ones of the previous known algorithms solving the same problem. Finally, in the third chapter, we study a problem from game theory that can be modeled by means of polynomial systems of equations and inequalities over the real numbers. To deal with these systems, we develop specific methods in order to exploit the particularities they present.
Fil: Perrucci, Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Materia
-
SISTEMAS DE ECUACIONES E INECUACIONES POLINOMIALES
TEORIA DE COMPLEJIDAD
STRAIGHT-LINE PROGRAMS
CALCULO SIMBOLICO
EQUILIBRIOS DE NASH
POLYNOMIAL SYSTEMS OF EQUATIONS AND INEQUALITIES
COMPLEXITY THEORY
STRAIGHT-LINE PROGRAMS
SYMBOLIC COMPUTATION
NASH EQUILIBRIA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- tesis:tesis_n4354_Perrucci
Ver los metadatos del registro completo
id |
BDUBAFCEN_928eaf6034d84351a9b1c73c015e0a31 |
---|---|
oai_identifier_str |
tesis:tesis_n4354_Perrucci |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Aspectos algorítmicos de geometría semialgebraicaAlgorithmic aspects in semialgebraic geometryPerrucci, DanielSISTEMAS DE ECUACIONES E INECUACIONES POLINOMIALESTEORIA DE COMPLEJIDADSTRAIGHT-LINE PROGRAMSCALCULO SIMBOLICOEQUILIBRIOS DE NASHPOLYNOMIAL SYSTEMS OF EQUATIONS AND INEQUALITIESCOMPLEXITY THEORYSTRAIGHT-LINE PROGRAMSSYMBOLIC COMPUTATIONNASH EQUILIBRIAEsta tesis versa sobre distintos aspectos algorítmicos de geometría semialgebraica; más concretamente, sobre la resolución efectiva de sistemas de ecuaciones e inecuaciones polinomiales sobre el cuerpo de los números reales. El trabajo se encuentra dividido en tres capítulos en los que se consideran problemas encuadrados en este marco general. En el primer capítulo, estudiamos cotas inferiores de complejidad para los algoritmos de resolución de ecuaciones polinomiales sobre los reales. Probamos resultados relacionados con la intratabilidad tanto de decidir la existencia como de aproximar las raíces reales para polinomios univariados con coeficientes enteros codificados vía straight-line programs. En el segundo capítulo presentamos nuevos métodos probabilísticos para decidir la existencia de soluciones de un sistema de ecuaciones e inecuaciones polinomiales sobre los reales y para encontrar puntos en el conjunto de soluciones de estos sistemas. La complejidad de estos métodos mejora la de los algoritmos anteriores conocidos que resuelven el mismo problema. Finalmente, en el tercer capítulo estudiamos un problema proveniente de la teoría de juegos que se modela mediante sistemas de ecuaciones e inecuaciones polinomiales sobre los reales. Para tratar con estos sistemas, desarrollamos métodos específicos de manera de aprovechar las particularidades que presentan.This thesis deals with different algorithmic aspects in semialgebraic geometry; more precisely, with the effective resolution of polynomial systems of equations and inequalities over the real numbers. The thesis is divided into three chapters in which problems within this general frame are considered. In the first chapter, we study lower bounds for the complexity of algorithms solving polynomial equation systems over the real numbers. We prove some results related to the intractability of both the problem of deciding the existence of real roots and the problem of approximating real roots of univariate polynomials with integer coefficients encoded by straight-line programs. In the second chapter, we present new probabilistic methods to decide the existence of solutions to polynomial systems of equations and inequalities over the real numbers and to find points in the solution sets of these systems. The complexity of these methods is lower than the ones of the previous known algorithms solving the same problem. Finally, in the third chapter, we study a problem from game theory that can be modeled by means of polynomial systems of equations and inequalities over the real numbers. To deal with these systems, we develop specific methods in order to exploit the particularities they present.Fil: Perrucci, Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesSabia, JuanJerónimo, Gabriela Tali2008info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://hdl.handle.net/20.500.12110/tesis_n4354_Perruccispainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-10-16T09:27:54Ztesis:tesis_n4354_PerrucciInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:27:56.908Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Aspectos algorítmicos de geometría semialgebraica Algorithmic aspects in semialgebraic geometry |
title |
Aspectos algorítmicos de geometría semialgebraica |
spellingShingle |
Aspectos algorítmicos de geometría semialgebraica Perrucci, Daniel SISTEMAS DE ECUACIONES E INECUACIONES POLINOMIALES TEORIA DE COMPLEJIDAD STRAIGHT-LINE PROGRAMS CALCULO SIMBOLICO EQUILIBRIOS DE NASH POLYNOMIAL SYSTEMS OF EQUATIONS AND INEQUALITIES COMPLEXITY THEORY STRAIGHT-LINE PROGRAMS SYMBOLIC COMPUTATION NASH EQUILIBRIA |
title_short |
Aspectos algorítmicos de geometría semialgebraica |
title_full |
Aspectos algorítmicos de geometría semialgebraica |
title_fullStr |
Aspectos algorítmicos de geometría semialgebraica |
title_full_unstemmed |
Aspectos algorítmicos de geometría semialgebraica |
title_sort |
Aspectos algorítmicos de geometría semialgebraica |
dc.creator.none.fl_str_mv |
Perrucci, Daniel |
author |
Perrucci, Daniel |
author_facet |
Perrucci, Daniel |
author_role |
author |
dc.contributor.none.fl_str_mv |
Sabia, Juan Jerónimo, Gabriela Tali |
dc.subject.none.fl_str_mv |
SISTEMAS DE ECUACIONES E INECUACIONES POLINOMIALES TEORIA DE COMPLEJIDAD STRAIGHT-LINE PROGRAMS CALCULO SIMBOLICO EQUILIBRIOS DE NASH POLYNOMIAL SYSTEMS OF EQUATIONS AND INEQUALITIES COMPLEXITY THEORY STRAIGHT-LINE PROGRAMS SYMBOLIC COMPUTATION NASH EQUILIBRIA |
topic |
SISTEMAS DE ECUACIONES E INECUACIONES POLINOMIALES TEORIA DE COMPLEJIDAD STRAIGHT-LINE PROGRAMS CALCULO SIMBOLICO EQUILIBRIOS DE NASH POLYNOMIAL SYSTEMS OF EQUATIONS AND INEQUALITIES COMPLEXITY THEORY STRAIGHT-LINE PROGRAMS SYMBOLIC COMPUTATION NASH EQUILIBRIA |
dc.description.none.fl_txt_mv |
Esta tesis versa sobre distintos aspectos algorítmicos de geometría semialgebraica; más concretamente, sobre la resolución efectiva de sistemas de ecuaciones e inecuaciones polinomiales sobre el cuerpo de los números reales. El trabajo se encuentra dividido en tres capítulos en los que se consideran problemas encuadrados en este marco general. En el primer capítulo, estudiamos cotas inferiores de complejidad para los algoritmos de resolución de ecuaciones polinomiales sobre los reales. Probamos resultados relacionados con la intratabilidad tanto de decidir la existencia como de aproximar las raíces reales para polinomios univariados con coeficientes enteros codificados vía straight-line programs. En el segundo capítulo presentamos nuevos métodos probabilísticos para decidir la existencia de soluciones de un sistema de ecuaciones e inecuaciones polinomiales sobre los reales y para encontrar puntos en el conjunto de soluciones de estos sistemas. La complejidad de estos métodos mejora la de los algoritmos anteriores conocidos que resuelven el mismo problema. Finalmente, en el tercer capítulo estudiamos un problema proveniente de la teoría de juegos que se modela mediante sistemas de ecuaciones e inecuaciones polinomiales sobre los reales. Para tratar con estos sistemas, desarrollamos métodos específicos de manera de aprovechar las particularidades que presentan. This thesis deals with different algorithmic aspects in semialgebraic geometry; more precisely, with the effective resolution of polynomial systems of equations and inequalities over the real numbers. The thesis is divided into three chapters in which problems within this general frame are considered. In the first chapter, we study lower bounds for the complexity of algorithms solving polynomial equation systems over the real numbers. We prove some results related to the intractability of both the problem of deciding the existence of real roots and the problem of approximating real roots of univariate polynomials with integer coefficients encoded by straight-line programs. In the second chapter, we present new probabilistic methods to decide the existence of solutions to polynomial systems of equations and inequalities over the real numbers and to find points in the solution sets of these systems. The complexity of these methods is lower than the ones of the previous known algorithms solving the same problem. Finally, in the third chapter, we study a problem from game theory that can be modeled by means of polynomial systems of equations and inequalities over the real numbers. To deal with these systems, we develop specific methods in order to exploit the particularities they present. Fil: Perrucci, Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
Esta tesis versa sobre distintos aspectos algorítmicos de geometría semialgebraica; más concretamente, sobre la resolución efectiva de sistemas de ecuaciones e inecuaciones polinomiales sobre el cuerpo de los números reales. El trabajo se encuentra dividido en tres capítulos en los que se consideran problemas encuadrados en este marco general. En el primer capítulo, estudiamos cotas inferiores de complejidad para los algoritmos de resolución de ecuaciones polinomiales sobre los reales. Probamos resultados relacionados con la intratabilidad tanto de decidir la existencia como de aproximar las raíces reales para polinomios univariados con coeficientes enteros codificados vía straight-line programs. En el segundo capítulo presentamos nuevos métodos probabilísticos para decidir la existencia de soluciones de un sistema de ecuaciones e inecuaciones polinomiales sobre los reales y para encontrar puntos en el conjunto de soluciones de estos sistemas. La complejidad de estos métodos mejora la de los algoritmos anteriores conocidos que resuelven el mismo problema. Finalmente, en el tercer capítulo estudiamos un problema proveniente de la teoría de juegos que se modela mediante sistemas de ecuaciones e inecuaciones polinomiales sobre los reales. Para tratar con estos sistemas, desarrollamos métodos específicos de manera de aprovechar las particularidades que presentan. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://hdl.handle.net/20.500.12110/tesis_n4354_Perrucci |
url |
https://hdl.handle.net/20.500.12110/tesis_n4354_Perrucci |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
publisher.none.fl_str_mv |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1846142803410681857 |
score |
12.712165 |