Aspectos algorítmicos de geometría semialgebraica

Autores
Perrucci, Daniel
Año de publicación
2008
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Sabia, Juan
Jerónimo, Gabriela Tali
Descripción
Esta tesis versa sobre distintos aspectos algorítmicos de geometría semialgebraica; más concretamente, sobre la resolución efectiva de sistemas de ecuaciones e inecuaciones polinomiales sobre el cuerpo de los números reales. El trabajo se encuentra dividido en tres capítulos en los que se consideran problemas encuadrados en este marco general. En el primer capítulo, estudiamos cotas inferiores de complejidad para los algoritmos de resolución de ecuaciones polinomiales sobre los reales. Probamos resultados relacionados con la intratabilidad tanto de decidir la existencia como de aproximar las raíces reales para polinomios univariados con coeficientes enteros codificados vía straight-line programs. En el segundo capítulo presentamos nuevos métodos probabilísticos para decidir la existencia de soluciones de un sistema de ecuaciones e inecuaciones polinomiales sobre los reales y para encontrar puntos en el conjunto de soluciones de estos sistemas. La complejidad de estos métodos mejora la de los algoritmos anteriores conocidos que resuelven el mismo problema. Finalmente, en el tercer capítulo estudiamos un problema proveniente de la teoría de juegos que se modela mediante sistemas de ecuaciones e inecuaciones polinomiales sobre los reales. Para tratar con estos sistemas, desarrollamos métodos específicos de manera de aprovechar las particularidades que presentan.
This thesis deals with different algorithmic aspects in semialgebraic geometry; more precisely, with the effective resolution of polynomial systems of equations and inequalities over the real numbers. The thesis is divided into three chapters in which problems within this general frame are considered. In the first chapter, we study lower bounds for the complexity of algorithms solving polynomial equation systems over the real numbers. We prove some results related to the intractability of both the problem of deciding the existence of real roots and the problem of approximating real roots of univariate polynomials with integer coefficients encoded by straight-line programs. In the second chapter, we present new probabilistic methods to decide the existence of solutions to polynomial systems of equations and inequalities over the real numbers and to find points in the solution sets of these systems. The complexity of these methods is lower than the ones of the previous known algorithms solving the same problem. Finally, in the third chapter, we study a problem from game theory that can be modeled by means of polynomial systems of equations and inequalities over the real numbers. To deal with these systems, we develop specific methods in order to exploit the particularities they present.
Fil: Perrucci, Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Materia
SISTEMAS DE ECUACIONES E INECUACIONES POLINOMIALES
TEORIA DE COMPLEJIDAD
STRAIGHT-LINE PROGRAMS
CALCULO SIMBOLICO
EQUILIBRIOS DE NASH
POLYNOMIAL SYSTEMS OF EQUATIONS AND INEQUALITIES
COMPLEXITY THEORY
STRAIGHT-LINE PROGRAMS
SYMBOLIC COMPUTATION
NASH EQUILIBRIA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
tesis:tesis_n4354_Perrucci

id BDUBAFCEN_928eaf6034d84351a9b1c73c015e0a31
oai_identifier_str tesis:tesis_n4354_Perrucci
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Aspectos algorítmicos de geometría semialgebraicaAlgorithmic aspects in semialgebraic geometryPerrucci, DanielSISTEMAS DE ECUACIONES E INECUACIONES POLINOMIALESTEORIA DE COMPLEJIDADSTRAIGHT-LINE PROGRAMSCALCULO SIMBOLICOEQUILIBRIOS DE NASHPOLYNOMIAL SYSTEMS OF EQUATIONS AND INEQUALITIESCOMPLEXITY THEORYSTRAIGHT-LINE PROGRAMSSYMBOLIC COMPUTATIONNASH EQUILIBRIAEsta tesis versa sobre distintos aspectos algorítmicos de geometría semialgebraica; más concretamente, sobre la resolución efectiva de sistemas de ecuaciones e inecuaciones polinomiales sobre el cuerpo de los números reales. El trabajo se encuentra dividido en tres capítulos en los que se consideran problemas encuadrados en este marco general. En el primer capítulo, estudiamos cotas inferiores de complejidad para los algoritmos de resolución de ecuaciones polinomiales sobre los reales. Probamos resultados relacionados con la intratabilidad tanto de decidir la existencia como de aproximar las raíces reales para polinomios univariados con coeficientes enteros codificados vía straight-line programs. En el segundo capítulo presentamos nuevos métodos probabilísticos para decidir la existencia de soluciones de un sistema de ecuaciones e inecuaciones polinomiales sobre los reales y para encontrar puntos en el conjunto de soluciones de estos sistemas. La complejidad de estos métodos mejora la de los algoritmos anteriores conocidos que resuelven el mismo problema. Finalmente, en el tercer capítulo estudiamos un problema proveniente de la teoría de juegos que se modela mediante sistemas de ecuaciones e inecuaciones polinomiales sobre los reales. Para tratar con estos sistemas, desarrollamos métodos específicos de manera de aprovechar las particularidades que presentan.This thesis deals with different algorithmic aspects in semialgebraic geometry; more precisely, with the effective resolution of polynomial systems of equations and inequalities over the real numbers. The thesis is divided into three chapters in which problems within this general frame are considered. In the first chapter, we study lower bounds for the complexity of algorithms solving polynomial equation systems over the real numbers. We prove some results related to the intractability of both the problem of deciding the existence of real roots and the problem of approximating real roots of univariate polynomials with integer coefficients encoded by straight-line programs. In the second chapter, we present new probabilistic methods to decide the existence of solutions to polynomial systems of equations and inequalities over the real numbers and to find points in the solution sets of these systems. The complexity of these methods is lower than the ones of the previous known algorithms solving the same problem. Finally, in the third chapter, we study a problem from game theory that can be modeled by means of polynomial systems of equations and inequalities over the real numbers. To deal with these systems, we develop specific methods in order to exploit the particularities they present.Fil: Perrucci, Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesSabia, JuanJerónimo, Gabriela Tali2008info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://hdl.handle.net/20.500.12110/tesis_n4354_Perruccispainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-10-16T09:27:54Ztesis:tesis_n4354_PerrucciInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:27:56.908Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Aspectos algorítmicos de geometría semialgebraica
Algorithmic aspects in semialgebraic geometry
title Aspectos algorítmicos de geometría semialgebraica
spellingShingle Aspectos algorítmicos de geometría semialgebraica
Perrucci, Daniel
SISTEMAS DE ECUACIONES E INECUACIONES POLINOMIALES
TEORIA DE COMPLEJIDAD
STRAIGHT-LINE PROGRAMS
CALCULO SIMBOLICO
EQUILIBRIOS DE NASH
POLYNOMIAL SYSTEMS OF EQUATIONS AND INEQUALITIES
COMPLEXITY THEORY
STRAIGHT-LINE PROGRAMS
SYMBOLIC COMPUTATION
NASH EQUILIBRIA
title_short Aspectos algorítmicos de geometría semialgebraica
title_full Aspectos algorítmicos de geometría semialgebraica
title_fullStr Aspectos algorítmicos de geometría semialgebraica
title_full_unstemmed Aspectos algorítmicos de geometría semialgebraica
title_sort Aspectos algorítmicos de geometría semialgebraica
dc.creator.none.fl_str_mv Perrucci, Daniel
author Perrucci, Daniel
author_facet Perrucci, Daniel
author_role author
dc.contributor.none.fl_str_mv Sabia, Juan
Jerónimo, Gabriela Tali
dc.subject.none.fl_str_mv SISTEMAS DE ECUACIONES E INECUACIONES POLINOMIALES
TEORIA DE COMPLEJIDAD
STRAIGHT-LINE PROGRAMS
CALCULO SIMBOLICO
EQUILIBRIOS DE NASH
POLYNOMIAL SYSTEMS OF EQUATIONS AND INEQUALITIES
COMPLEXITY THEORY
STRAIGHT-LINE PROGRAMS
SYMBOLIC COMPUTATION
NASH EQUILIBRIA
topic SISTEMAS DE ECUACIONES E INECUACIONES POLINOMIALES
TEORIA DE COMPLEJIDAD
STRAIGHT-LINE PROGRAMS
CALCULO SIMBOLICO
EQUILIBRIOS DE NASH
POLYNOMIAL SYSTEMS OF EQUATIONS AND INEQUALITIES
COMPLEXITY THEORY
STRAIGHT-LINE PROGRAMS
SYMBOLIC COMPUTATION
NASH EQUILIBRIA
dc.description.none.fl_txt_mv Esta tesis versa sobre distintos aspectos algorítmicos de geometría semialgebraica; más concretamente, sobre la resolución efectiva de sistemas de ecuaciones e inecuaciones polinomiales sobre el cuerpo de los números reales. El trabajo se encuentra dividido en tres capítulos en los que se consideran problemas encuadrados en este marco general. En el primer capítulo, estudiamos cotas inferiores de complejidad para los algoritmos de resolución de ecuaciones polinomiales sobre los reales. Probamos resultados relacionados con la intratabilidad tanto de decidir la existencia como de aproximar las raíces reales para polinomios univariados con coeficientes enteros codificados vía straight-line programs. En el segundo capítulo presentamos nuevos métodos probabilísticos para decidir la existencia de soluciones de un sistema de ecuaciones e inecuaciones polinomiales sobre los reales y para encontrar puntos en el conjunto de soluciones de estos sistemas. La complejidad de estos métodos mejora la de los algoritmos anteriores conocidos que resuelven el mismo problema. Finalmente, en el tercer capítulo estudiamos un problema proveniente de la teoría de juegos que se modela mediante sistemas de ecuaciones e inecuaciones polinomiales sobre los reales. Para tratar con estos sistemas, desarrollamos métodos específicos de manera de aprovechar las particularidades que presentan.
This thesis deals with different algorithmic aspects in semialgebraic geometry; more precisely, with the effective resolution of polynomial systems of equations and inequalities over the real numbers. The thesis is divided into three chapters in which problems within this general frame are considered. In the first chapter, we study lower bounds for the complexity of algorithms solving polynomial equation systems over the real numbers. We prove some results related to the intractability of both the problem of deciding the existence of real roots and the problem of approximating real roots of univariate polynomials with integer coefficients encoded by straight-line programs. In the second chapter, we present new probabilistic methods to decide the existence of solutions to polynomial systems of equations and inequalities over the real numbers and to find points in the solution sets of these systems. The complexity of these methods is lower than the ones of the previous known algorithms solving the same problem. Finally, in the third chapter, we study a problem from game theory that can be modeled by means of polynomial systems of equations and inequalities over the real numbers. To deal with these systems, we develop specific methods in order to exploit the particularities they present.
Fil: Perrucci, Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description Esta tesis versa sobre distintos aspectos algorítmicos de geometría semialgebraica; más concretamente, sobre la resolución efectiva de sistemas de ecuaciones e inecuaciones polinomiales sobre el cuerpo de los números reales. El trabajo se encuentra dividido en tres capítulos en los que se consideran problemas encuadrados en este marco general. En el primer capítulo, estudiamos cotas inferiores de complejidad para los algoritmos de resolución de ecuaciones polinomiales sobre los reales. Probamos resultados relacionados con la intratabilidad tanto de decidir la existencia como de aproximar las raíces reales para polinomios univariados con coeficientes enteros codificados vía straight-line programs. En el segundo capítulo presentamos nuevos métodos probabilísticos para decidir la existencia de soluciones de un sistema de ecuaciones e inecuaciones polinomiales sobre los reales y para encontrar puntos en el conjunto de soluciones de estos sistemas. La complejidad de estos métodos mejora la de los algoritmos anteriores conocidos que resuelven el mismo problema. Finalmente, en el tercer capítulo estudiamos un problema proveniente de la teoría de juegos que se modela mediante sistemas de ecuaciones e inecuaciones polinomiales sobre los reales. Para tratar con estos sistemas, desarrollamos métodos específicos de manera de aprovechar las particularidades que presentan.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv https://hdl.handle.net/20.500.12110/tesis_n4354_Perrucci
url https://hdl.handle.net/20.500.12110/tesis_n4354_Perrucci
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
dc.source.none.fl_str_mv reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1846142803410681857
score 12.712165