Subsonic solutions to a one-dimensional non-isentropic hydrodynamic model for semiconductors
- Autores
- Amster, P.; Beccar Varela, M.P.; Jüngel, A.; Mariani, M.C.
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The one-dimensional stationary full hydrodynamic model for semiconductor devices with non-isentropic pressure is studied. This model consists of the equations for the electron density, electron temperature, and electric field in a bounded domain supplemented with boundary conditions. The existence of a classical subsonic solution with positive particle density and positive temperature is shown in two situations: non-constant and constant heat conductivities. Moreover, we prove uniqueness of a classical solution in the latter case. The existence proofs are based on elliptic estimates, Stampacchia truncation methods, and fixed-point arguments. © 2001 Academic Press.
Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Beccar Varela, M.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Anal. Appl. 2001;258(1):52-62
- Materia
- Full hydrodynamic equations; existence; uniqueness; positive solutions; non-isentropic pressure
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0022247X_v258_n1_p52_Amster
Ver los metadatos del registro completo
| id |
BDUBAFCEN_8ae70b04b59e4dab42d1a4b4e13fa886 |
|---|---|
| oai_identifier_str |
paperaa:paper_0022247X_v258_n1_p52_Amster |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
Subsonic solutions to a one-dimensional non-isentropic hydrodynamic model for semiconductorsAmster, P.Beccar Varela, M.P.Jüngel, A.Mariani, M.C.Full hydrodynamic equations; existence; uniqueness; positive solutions; non-isentropic pressureThe one-dimensional stationary full hydrodynamic model for semiconductor devices with non-isentropic pressure is studied. This model consists of the equations for the electron density, electron temperature, and electric field in a bounded domain supplemented with boundary conditions. The existence of a classical subsonic solution with positive particle density and positive temperature is shown in two situations: non-constant and constant heat conductivities. Moreover, we prove uniqueness of a classical solution in the latter case. The existence proofs are based on elliptic estimates, Stampacchia truncation methods, and fixed-point arguments. © 2001 Academic Press.Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Beccar Varela, M.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2001info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v258_n1_p52_AmsterJ. Math. Anal. Appl. 2001;258(1):52-62reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-11-06T09:39:43Zpaperaa:paper_0022247X_v258_n1_p52_AmsterInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-11-06 09:39:45.049Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
Subsonic solutions to a one-dimensional non-isentropic hydrodynamic model for semiconductors |
| title |
Subsonic solutions to a one-dimensional non-isentropic hydrodynamic model for semiconductors |
| spellingShingle |
Subsonic solutions to a one-dimensional non-isentropic hydrodynamic model for semiconductors Amster, P. Full hydrodynamic equations; existence; uniqueness; positive solutions; non-isentropic pressure |
| title_short |
Subsonic solutions to a one-dimensional non-isentropic hydrodynamic model for semiconductors |
| title_full |
Subsonic solutions to a one-dimensional non-isentropic hydrodynamic model for semiconductors |
| title_fullStr |
Subsonic solutions to a one-dimensional non-isentropic hydrodynamic model for semiconductors |
| title_full_unstemmed |
Subsonic solutions to a one-dimensional non-isentropic hydrodynamic model for semiconductors |
| title_sort |
Subsonic solutions to a one-dimensional non-isentropic hydrodynamic model for semiconductors |
| dc.creator.none.fl_str_mv |
Amster, P. Beccar Varela, M.P. Jüngel, A. Mariani, M.C. |
| author |
Amster, P. |
| author_facet |
Amster, P. Beccar Varela, M.P. Jüngel, A. Mariani, M.C. |
| author_role |
author |
| author2 |
Beccar Varela, M.P. Jüngel, A. Mariani, M.C. |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Full hydrodynamic equations; existence; uniqueness; positive solutions; non-isentropic pressure |
| topic |
Full hydrodynamic equations; existence; uniqueness; positive solutions; non-isentropic pressure |
| dc.description.none.fl_txt_mv |
The one-dimensional stationary full hydrodynamic model for semiconductor devices with non-isentropic pressure is studied. This model consists of the equations for the electron density, electron temperature, and electric field in a bounded domain supplemented with boundary conditions. The existence of a classical subsonic solution with positive particle density and positive temperature is shown in two situations: non-constant and constant heat conductivities. Moreover, we prove uniqueness of a classical solution in the latter case. The existence proofs are based on elliptic estimates, Stampacchia truncation methods, and fixed-point arguments. © 2001 Academic Press. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Beccar Varela, M.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
The one-dimensional stationary full hydrodynamic model for semiconductor devices with non-isentropic pressure is studied. This model consists of the equations for the electron density, electron temperature, and electric field in a bounded domain supplemented with boundary conditions. The existence of a classical subsonic solution with positive particle density and positive temperature is shown in two situations: non-constant and constant heat conductivities. Moreover, we prove uniqueness of a classical solution in the latter case. The existence proofs are based on elliptic estimates, Stampacchia truncation methods, and fixed-point arguments. © 2001 Academic Press. |
| publishDate |
2001 |
| dc.date.none.fl_str_mv |
2001 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0022247X_v258_n1_p52_Amster |
| url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v258_n1_p52_Amster |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
J. Math. Anal. Appl. 2001;258(1):52-62 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1848046093371179008 |
| score |
12.976206 |