A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients
- Autores
- Ventura, A.C.; Bruno, L.; Demuro, A.; Parker, I.; Dawson, S.P.
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Local intracellular Ca2+ signals result from Ca2+ flux into the cytosol through individual channels or clusters of channels. To gain a mechanistic understanding of these events we need to know the magnitude and spatial distribution of the underlying Ca2+ flux. However, this is difficult to infer from fluorescence Ca2+ images because the distribution of Ca2+-bound dye is affected by poorly characterized processes including diffusion of Ca2+ ions, their binding to mobile and immobile buffers, and sequestration by Ca2+ pumps. Several methods have previously been proposed to derive Ca2+ flux from fluorescence images, but all require explicit knowledge or assumptions regarding these processes. We now present a novel algorithm that requires few assumptions and is largely model-independent. By testing the algorithm with both numerically generated image data and experimental images of sparklets resulting from Ca2+ flux through individual voltage-gated channels, we show that it satisfactorily reconstructs the magnitude and time course of the underlying Ca2+ currents. © 2005 by the Biophysical Society.
Fil:Ventura, A.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Bruno, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Dawson, S.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Biophys. J. 2005;88(4):2403-2421
- Materia
-
adenosine triphosphatase (calcium)
calcium channel
calcium ion
voltage gated calcium channel
algorithm
article
calcium binding
calcium cell level
calcium current
calcium signaling
calcium transport
cytosol
diffusion
fluorescence
mathematical analysis
model - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00063495_v88_n4_p2403_Ventura
Ver los metadatos del registro completo
id |
BDUBAFCEN_86619e8e3acf47cec4e779e670f9e04b |
---|---|
oai_identifier_str |
paperaa:paper_00063495_v88_n4_p2403_Ventura |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transientsVentura, A.C.Bruno, L.Demuro, A.Parker, I.Dawson, S.P.adenosine triphosphatase (calcium)calcium channelcalcium ionvoltage gated calcium channelalgorithmarticlecalcium bindingcalcium cell levelcalcium currentcalcium signalingcalcium transportcytosoldiffusionfluorescencemathematical analysismodelLocal intracellular Ca2+ signals result from Ca2+ flux into the cytosol through individual channels or clusters of channels. To gain a mechanistic understanding of these events we need to know the magnitude and spatial distribution of the underlying Ca2+ flux. However, this is difficult to infer from fluorescence Ca2+ images because the distribution of Ca2+-bound dye is affected by poorly characterized processes including diffusion of Ca2+ ions, their binding to mobile and immobile buffers, and sequestration by Ca2+ pumps. Several methods have previously been proposed to derive Ca2+ flux from fluorescence images, but all require explicit knowledge or assumptions regarding these processes. We now present a novel algorithm that requires few assumptions and is largely model-independent. By testing the algorithm with both numerically generated image data and experimental images of sparklets resulting from Ca2+ flux through individual voltage-gated channels, we show that it satisfactorily reconstructs the magnitude and time course of the underlying Ca2+ currents. © 2005 by the Biophysical Society.Fil:Ventura, A.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Bruno, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Dawson, S.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00063495_v88_n4_p2403_VenturaBiophys. J. 2005;88(4):2403-2421reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:03Zpaperaa:paper_00063495_v88_n4_p2403_VenturaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:04.247Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients |
title |
A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients |
spellingShingle |
A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients Ventura, A.C. adenosine triphosphatase (calcium) calcium channel calcium ion voltage gated calcium channel algorithm article calcium binding calcium cell level calcium current calcium signaling calcium transport cytosol diffusion fluorescence mathematical analysis model |
title_short |
A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients |
title_full |
A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients |
title_fullStr |
A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients |
title_full_unstemmed |
A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients |
title_sort |
A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients |
dc.creator.none.fl_str_mv |
Ventura, A.C. Bruno, L. Demuro, A. Parker, I. Dawson, S.P. |
author |
Ventura, A.C. |
author_facet |
Ventura, A.C. Bruno, L. Demuro, A. Parker, I. Dawson, S.P. |
author_role |
author |
author2 |
Bruno, L. Demuro, A. Parker, I. Dawson, S.P. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
adenosine triphosphatase (calcium) calcium channel calcium ion voltage gated calcium channel algorithm article calcium binding calcium cell level calcium current calcium signaling calcium transport cytosol diffusion fluorescence mathematical analysis model |
topic |
adenosine triphosphatase (calcium) calcium channel calcium ion voltage gated calcium channel algorithm article calcium binding calcium cell level calcium current calcium signaling calcium transport cytosol diffusion fluorescence mathematical analysis model |
dc.description.none.fl_txt_mv |
Local intracellular Ca2+ signals result from Ca2+ flux into the cytosol through individual channels or clusters of channels. To gain a mechanistic understanding of these events we need to know the magnitude and spatial distribution of the underlying Ca2+ flux. However, this is difficult to infer from fluorescence Ca2+ images because the distribution of Ca2+-bound dye is affected by poorly characterized processes including diffusion of Ca2+ ions, their binding to mobile and immobile buffers, and sequestration by Ca2+ pumps. Several methods have previously been proposed to derive Ca2+ flux from fluorescence images, but all require explicit knowledge or assumptions regarding these processes. We now present a novel algorithm that requires few assumptions and is largely model-independent. By testing the algorithm with both numerically generated image data and experimental images of sparklets resulting from Ca2+ flux through individual voltage-gated channels, we show that it satisfactorily reconstructs the magnitude and time course of the underlying Ca2+ currents. © 2005 by the Biophysical Society. Fil:Ventura, A.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Bruno, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Dawson, S.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
Local intracellular Ca2+ signals result from Ca2+ flux into the cytosol through individual channels or clusters of channels. To gain a mechanistic understanding of these events we need to know the magnitude and spatial distribution of the underlying Ca2+ flux. However, this is difficult to infer from fluorescence Ca2+ images because the distribution of Ca2+-bound dye is affected by poorly characterized processes including diffusion of Ca2+ ions, their binding to mobile and immobile buffers, and sequestration by Ca2+ pumps. Several methods have previously been proposed to derive Ca2+ flux from fluorescence images, but all require explicit knowledge or assumptions regarding these processes. We now present a novel algorithm that requires few assumptions and is largely model-independent. By testing the algorithm with both numerically generated image data and experimental images of sparklets resulting from Ca2+ flux through individual voltage-gated channels, we show that it satisfactorily reconstructs the magnitude and time course of the underlying Ca2+ currents. © 2005 by the Biophysical Society. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00063495_v88_n4_p2403_Ventura |
url |
http://hdl.handle.net/20.500.12110/paper_00063495_v88_n4_p2403_Ventura |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Biophys. J. 2005;88(4):2403-2421 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618738083561472 |
score |
13.070432 |