A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients

Autores
Ventura, A.C.; Bruno, L.; Demuro, A.; Parker, I.; Dawson, S.P.
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Local intracellular Ca2+ signals result from Ca2+ flux into the cytosol through individual channels or clusters of channels. To gain a mechanistic understanding of these events we need to know the magnitude and spatial distribution of the underlying Ca2+ flux. However, this is difficult to infer from fluorescence Ca2+ images because the distribution of Ca2+-bound dye is affected by poorly characterized processes including diffusion of Ca2+ ions, their binding to mobile and immobile buffers, and sequestration by Ca2+ pumps. Several methods have previously been proposed to derive Ca2+ flux from fluorescence images, but all require explicit knowledge or assumptions regarding these processes. We now present a novel algorithm that requires few assumptions and is largely model-independent. By testing the algorithm with both numerically generated image data and experimental images of sparklets resulting from Ca2+ flux through individual voltage-gated channels, we show that it satisfactorily reconstructs the magnitude and time course of the underlying Ca2+ currents. © 2005 by the Biophysical Society.
Fil:Ventura, A.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Bruno, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Dawson, S.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Biophys. J. 2005;88(4):2403-2421
Materia
adenosine triphosphatase (calcium)
calcium channel
calcium ion
voltage gated calcium channel
algorithm
article
calcium binding
calcium cell level
calcium current
calcium signaling
calcium transport
cytosol
diffusion
fluorescence
mathematical analysis
model
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00063495_v88_n4_p2403_Ventura

id BDUBAFCEN_86619e8e3acf47cec4e779e670f9e04b
oai_identifier_str paperaa:paper_00063495_v88_n4_p2403_Ventura
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transientsVentura, A.C.Bruno, L.Demuro, A.Parker, I.Dawson, S.P.adenosine triphosphatase (calcium)calcium channelcalcium ionvoltage gated calcium channelalgorithmarticlecalcium bindingcalcium cell levelcalcium currentcalcium signalingcalcium transportcytosoldiffusionfluorescencemathematical analysismodelLocal intracellular Ca2+ signals result from Ca2+ flux into the cytosol through individual channels or clusters of channels. To gain a mechanistic understanding of these events we need to know the magnitude and spatial distribution of the underlying Ca2+ flux. However, this is difficult to infer from fluorescence Ca2+ images because the distribution of Ca2+-bound dye is affected by poorly characterized processes including diffusion of Ca2+ ions, their binding to mobile and immobile buffers, and sequestration by Ca2+ pumps. Several methods have previously been proposed to derive Ca2+ flux from fluorescence images, but all require explicit knowledge or assumptions regarding these processes. We now present a novel algorithm that requires few assumptions and is largely model-independent. By testing the algorithm with both numerically generated image data and experimental images of sparklets resulting from Ca2+ flux through individual voltage-gated channels, we show that it satisfactorily reconstructs the magnitude and time course of the underlying Ca2+ currents. © 2005 by the Biophysical Society.Fil:Ventura, A.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Bruno, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Dawson, S.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00063495_v88_n4_p2403_VenturaBiophys. J. 2005;88(4):2403-2421reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:03Zpaperaa:paper_00063495_v88_n4_p2403_VenturaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:04.247Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients
title A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients
spellingShingle A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients
Ventura, A.C.
adenosine triphosphatase (calcium)
calcium channel
calcium ion
voltage gated calcium channel
algorithm
article
calcium binding
calcium cell level
calcium current
calcium signaling
calcium transport
cytosol
diffusion
fluorescence
mathematical analysis
model
title_short A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients
title_full A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients
title_fullStr A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients
title_full_unstemmed A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients
title_sort A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients
dc.creator.none.fl_str_mv Ventura, A.C.
Bruno, L.
Demuro, A.
Parker, I.
Dawson, S.P.
author Ventura, A.C.
author_facet Ventura, A.C.
Bruno, L.
Demuro, A.
Parker, I.
Dawson, S.P.
author_role author
author2 Bruno, L.
Demuro, A.
Parker, I.
Dawson, S.P.
author2_role author
author
author
author
dc.subject.none.fl_str_mv adenosine triphosphatase (calcium)
calcium channel
calcium ion
voltage gated calcium channel
algorithm
article
calcium binding
calcium cell level
calcium current
calcium signaling
calcium transport
cytosol
diffusion
fluorescence
mathematical analysis
model
topic adenosine triphosphatase (calcium)
calcium channel
calcium ion
voltage gated calcium channel
algorithm
article
calcium binding
calcium cell level
calcium current
calcium signaling
calcium transport
cytosol
diffusion
fluorescence
mathematical analysis
model
dc.description.none.fl_txt_mv Local intracellular Ca2+ signals result from Ca2+ flux into the cytosol through individual channels or clusters of channels. To gain a mechanistic understanding of these events we need to know the magnitude and spatial distribution of the underlying Ca2+ flux. However, this is difficult to infer from fluorescence Ca2+ images because the distribution of Ca2+-bound dye is affected by poorly characterized processes including diffusion of Ca2+ ions, their binding to mobile and immobile buffers, and sequestration by Ca2+ pumps. Several methods have previously been proposed to derive Ca2+ flux from fluorescence images, but all require explicit knowledge or assumptions regarding these processes. We now present a novel algorithm that requires few assumptions and is largely model-independent. By testing the algorithm with both numerically generated image data and experimental images of sparklets resulting from Ca2+ flux through individual voltage-gated channels, we show that it satisfactorily reconstructs the magnitude and time course of the underlying Ca2+ currents. © 2005 by the Biophysical Society.
Fil:Ventura, A.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Bruno, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Dawson, S.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description Local intracellular Ca2+ signals result from Ca2+ flux into the cytosol through individual channels or clusters of channels. To gain a mechanistic understanding of these events we need to know the magnitude and spatial distribution of the underlying Ca2+ flux. However, this is difficult to infer from fluorescence Ca2+ images because the distribution of Ca2+-bound dye is affected by poorly characterized processes including diffusion of Ca2+ ions, their binding to mobile and immobile buffers, and sequestration by Ca2+ pumps. Several methods have previously been proposed to derive Ca2+ flux from fluorescence images, but all require explicit knowledge or assumptions regarding these processes. We now present a novel algorithm that requires few assumptions and is largely model-independent. By testing the algorithm with both numerically generated image data and experimental images of sparklets resulting from Ca2+ flux through individual voltage-gated channels, we show that it satisfactorily reconstructs the magnitude and time course of the underlying Ca2+ currents. © 2005 by the Biophysical Society.
publishDate 2005
dc.date.none.fl_str_mv 2005
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00063495_v88_n4_p2403_Ventura
url http://hdl.handle.net/20.500.12110/paper_00063495_v88_n4_p2403_Ventura
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Biophys. J. 2005;88(4):2403-2421
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618738083561472
score 13.070432