Optimal boundary holes for the Sobolev trace constant
- Autores
- Del Pezzo, L.; Fernández Bonder, J.; Neves, W.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we study the problem of minimizing the Sobolev trace Rayleigh quotient ∥u∥W1,p(ω)p/∥u∥Lq(∂ω)p among functions that vanish in a set contained on the boundary ∂ ω of given boundary measure.We prove existence of extremals for this problem, and analyze some particular cases where information about the location of the optimal boundary set can be given. Moreover, we further study the shape derivative of the Sobolev trace constant under regular perturbations of the boundary set. © 2011 Elsevier Inc.
Fil:Del Pezzo, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Differ. Equ. 2011;251(8):2327-2351
- Materia
-
P-Laplace operator
Shape optimization
Steklov eigenvalues - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00220396_v251_n8_p2327_DelPezzo
Ver los metadatos del registro completo
id |
BDUBAFCEN_bfca726ec735dfcb78a1d8186bdf98ee |
---|---|
oai_identifier_str |
paperaa:paper_00220396_v251_n8_p2327_DelPezzo |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Optimal boundary holes for the Sobolev trace constantDel Pezzo, L.Fernández Bonder, J.Neves, W.P-Laplace operatorShape optimizationSteklov eigenvaluesIn this paper we study the problem of minimizing the Sobolev trace Rayleigh quotient ∥u∥W1,p(ω)p/∥u∥Lq(∂ω)p among functions that vanish in a set contained on the boundary ∂ ω of given boundary measure.We prove existence of extremals for this problem, and analyze some particular cases where information about the location of the optimal boundary set can be given. Moreover, we further study the shape derivative of the Sobolev trace constant under regular perturbations of the boundary set. © 2011 Elsevier Inc.Fil:Del Pezzo, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00220396_v251_n8_p2327_DelPezzoJ. Differ. Equ. 2011;251(8):2327-2351reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:03Zpaperaa:paper_00220396_v251_n8_p2327_DelPezzoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:04.51Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Optimal boundary holes for the Sobolev trace constant |
title |
Optimal boundary holes for the Sobolev trace constant |
spellingShingle |
Optimal boundary holes for the Sobolev trace constant Del Pezzo, L. P-Laplace operator Shape optimization Steklov eigenvalues |
title_short |
Optimal boundary holes for the Sobolev trace constant |
title_full |
Optimal boundary holes for the Sobolev trace constant |
title_fullStr |
Optimal boundary holes for the Sobolev trace constant |
title_full_unstemmed |
Optimal boundary holes for the Sobolev trace constant |
title_sort |
Optimal boundary holes for the Sobolev trace constant |
dc.creator.none.fl_str_mv |
Del Pezzo, L. Fernández Bonder, J. Neves, W. |
author |
Del Pezzo, L. |
author_facet |
Del Pezzo, L. Fernández Bonder, J. Neves, W. |
author_role |
author |
author2 |
Fernández Bonder, J. Neves, W. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
P-Laplace operator Shape optimization Steklov eigenvalues |
topic |
P-Laplace operator Shape optimization Steklov eigenvalues |
dc.description.none.fl_txt_mv |
In this paper we study the problem of minimizing the Sobolev trace Rayleigh quotient ∥u∥W1,p(ω)p/∥u∥Lq(∂ω)p among functions that vanish in a set contained on the boundary ∂ ω of given boundary measure.We prove existence of extremals for this problem, and analyze some particular cases where information about the location of the optimal boundary set can be given. Moreover, we further study the shape derivative of the Sobolev trace constant under regular perturbations of the boundary set. © 2011 Elsevier Inc. Fil:Del Pezzo, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
In this paper we study the problem of minimizing the Sobolev trace Rayleigh quotient ∥u∥W1,p(ω)p/∥u∥Lq(∂ω)p among functions that vanish in a set contained on the boundary ∂ ω of given boundary measure.We prove existence of extremals for this problem, and analyze some particular cases where information about the location of the optimal boundary set can be given. Moreover, we further study the shape derivative of the Sobolev trace constant under regular perturbations of the boundary set. © 2011 Elsevier Inc. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00220396_v251_n8_p2327_DelPezzo |
url |
http://hdl.handle.net/20.500.12110/paper_00220396_v251_n8_p2327_DelPezzo |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Differ. Equ. 2011;251(8):2327-2351 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618738474680320 |
score |
13.070432 |