Optimal boundary holes for the Sobolev trace constant

Autores
Del Pezzo, L.; Fernández Bonder, J.; Neves, W.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we study the problem of minimizing the Sobolev trace Rayleigh quotient ∥u∥W1,p(ω)p/∥u∥Lq(∂ω)p among functions that vanish in a set contained on the boundary ∂ ω of given boundary measure.We prove existence of extremals for this problem, and analyze some particular cases where information about the location of the optimal boundary set can be given. Moreover, we further study the shape derivative of the Sobolev trace constant under regular perturbations of the boundary set. © 2011 Elsevier Inc.
Fil:Del Pezzo, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Differ. Equ. 2011;251(8):2327-2351
Materia
P-Laplace operator
Shape optimization
Steklov eigenvalues
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00220396_v251_n8_p2327_DelPezzo

id BDUBAFCEN_bfca726ec735dfcb78a1d8186bdf98ee
oai_identifier_str paperaa:paper_00220396_v251_n8_p2327_DelPezzo
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Optimal boundary holes for the Sobolev trace constantDel Pezzo, L.Fernández Bonder, J.Neves, W.P-Laplace operatorShape optimizationSteklov eigenvaluesIn this paper we study the problem of minimizing the Sobolev trace Rayleigh quotient ∥u∥W1,p(ω)p/∥u∥Lq(∂ω)p among functions that vanish in a set contained on the boundary ∂ ω of given boundary measure.We prove existence of extremals for this problem, and analyze some particular cases where information about the location of the optimal boundary set can be given. Moreover, we further study the shape derivative of the Sobolev trace constant under regular perturbations of the boundary set. © 2011 Elsevier Inc.Fil:Del Pezzo, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00220396_v251_n8_p2327_DelPezzoJ. Differ. Equ. 2011;251(8):2327-2351reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:03Zpaperaa:paper_00220396_v251_n8_p2327_DelPezzoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:04.51Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Optimal boundary holes for the Sobolev trace constant
title Optimal boundary holes for the Sobolev trace constant
spellingShingle Optimal boundary holes for the Sobolev trace constant
Del Pezzo, L.
P-Laplace operator
Shape optimization
Steklov eigenvalues
title_short Optimal boundary holes for the Sobolev trace constant
title_full Optimal boundary holes for the Sobolev trace constant
title_fullStr Optimal boundary holes for the Sobolev trace constant
title_full_unstemmed Optimal boundary holes for the Sobolev trace constant
title_sort Optimal boundary holes for the Sobolev trace constant
dc.creator.none.fl_str_mv Del Pezzo, L.
Fernández Bonder, J.
Neves, W.
author Del Pezzo, L.
author_facet Del Pezzo, L.
Fernández Bonder, J.
Neves, W.
author_role author
author2 Fernández Bonder, J.
Neves, W.
author2_role author
author
dc.subject.none.fl_str_mv P-Laplace operator
Shape optimization
Steklov eigenvalues
topic P-Laplace operator
Shape optimization
Steklov eigenvalues
dc.description.none.fl_txt_mv In this paper we study the problem of minimizing the Sobolev trace Rayleigh quotient ∥u∥W1,p(ω)p/∥u∥Lq(∂ω)p among functions that vanish in a set contained on the boundary ∂ ω of given boundary measure.We prove existence of extremals for this problem, and analyze some particular cases where information about the location of the optimal boundary set can be given. Moreover, we further study the shape derivative of the Sobolev trace constant under regular perturbations of the boundary set. © 2011 Elsevier Inc.
Fil:Del Pezzo, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In this paper we study the problem of minimizing the Sobolev trace Rayleigh quotient ∥u∥W1,p(ω)p/∥u∥Lq(∂ω)p among functions that vanish in a set contained on the boundary ∂ ω of given boundary measure.We prove existence of extremals for this problem, and analyze some particular cases where information about the location of the optimal boundary set can be given. Moreover, we further study the shape derivative of the Sobolev trace constant under regular perturbations of the boundary set. © 2011 Elsevier Inc.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00220396_v251_n8_p2327_DelPezzo
url http://hdl.handle.net/20.500.12110/paper_00220396_v251_n8_p2327_DelPezzo
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Differ. Equ. 2011;251(8):2327-2351
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618738474680320
score 13.070432