Blow-up with logarithmic nonlinearities

Autores
Ferreira, R.; de Pablo, A.; Rossi, J.D.
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the asymptotic behaviour of nonnegative solutions of the nonlinear diffusion equation in the half-line with a nonlinear boundary condition,{Mathematical expression} with p, q, λ > 0. We describe in terms of p, q and λ when the solution is global in time and when it blows up in finite time. For blow-up solutions we find the blow-up rate and the blow-up set and we describe the asymptotic behaviour close to the blow-up time, showing that a phenomenon of asymptotic simplification takes place. We finally study the appearance of extinction in finite time. © 2007 Elsevier Inc. All rights reserved.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Differ. Equ. 2007;240(1):196-215
Materia
Asymptotic behaviour
Blow-up
Nonlinear boundary conditions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00220396_v240_n1_p196_Ferreira

id BDUBAFCEN_53e126413430949c365f0c8a9238faf8
oai_identifier_str paperaa:paper_00220396_v240_n1_p196_Ferreira
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Blow-up with logarithmic nonlinearitiesFerreira, R.de Pablo, A.Rossi, J.D.Asymptotic behaviourBlow-upNonlinear boundary conditionsWe study the asymptotic behaviour of nonnegative solutions of the nonlinear diffusion equation in the half-line with a nonlinear boundary condition,{Mathematical expression} with p, q, λ > 0. We describe in terms of p, q and λ when the solution is global in time and when it blows up in finite time. For blow-up solutions we find the blow-up rate and the blow-up set and we describe the asymptotic behaviour close to the blow-up time, showing that a phenomenon of asymptotic simplification takes place. We finally study the appearance of extinction in finite time. © 2007 Elsevier Inc. All rights reserved.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00220396_v240_n1_p196_FerreiraJ. Differ. Equ. 2007;240(1):196-215reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:09Zpaperaa:paper_00220396_v240_n1_p196_FerreiraInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:10.789Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Blow-up with logarithmic nonlinearities
title Blow-up with logarithmic nonlinearities
spellingShingle Blow-up with logarithmic nonlinearities
Ferreira, R.
Asymptotic behaviour
Blow-up
Nonlinear boundary conditions
title_short Blow-up with logarithmic nonlinearities
title_full Blow-up with logarithmic nonlinearities
title_fullStr Blow-up with logarithmic nonlinearities
title_full_unstemmed Blow-up with logarithmic nonlinearities
title_sort Blow-up with logarithmic nonlinearities
dc.creator.none.fl_str_mv Ferreira, R.
de Pablo, A.
Rossi, J.D.
author Ferreira, R.
author_facet Ferreira, R.
de Pablo, A.
Rossi, J.D.
author_role author
author2 de Pablo, A.
Rossi, J.D.
author2_role author
author
dc.subject.none.fl_str_mv Asymptotic behaviour
Blow-up
Nonlinear boundary conditions
topic Asymptotic behaviour
Blow-up
Nonlinear boundary conditions
dc.description.none.fl_txt_mv We study the asymptotic behaviour of nonnegative solutions of the nonlinear diffusion equation in the half-line with a nonlinear boundary condition,{Mathematical expression} with p, q, λ > 0. We describe in terms of p, q and λ when the solution is global in time and when it blows up in finite time. For blow-up solutions we find the blow-up rate and the blow-up set and we describe the asymptotic behaviour close to the blow-up time, showing that a phenomenon of asymptotic simplification takes place. We finally study the appearance of extinction in finite time. © 2007 Elsevier Inc. All rights reserved.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We study the asymptotic behaviour of nonnegative solutions of the nonlinear diffusion equation in the half-line with a nonlinear boundary condition,{Mathematical expression} with p, q, λ > 0. We describe in terms of p, q and λ when the solution is global in time and when it blows up in finite time. For blow-up solutions we find the blow-up rate and the blow-up set and we describe the asymptotic behaviour close to the blow-up time, showing that a phenomenon of asymptotic simplification takes place. We finally study the appearance of extinction in finite time. © 2007 Elsevier Inc. All rights reserved.
publishDate 2007
dc.date.none.fl_str_mv 2007
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00220396_v240_n1_p196_Ferreira
url http://hdl.handle.net/20.500.12110/paper_00220396_v240_n1_p196_Ferreira
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Differ. Equ. 2007;240(1):196-215
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618740779450368
score 13.070432