Blow-up with logarithmic nonlinearities
- Autores
- Ferreira, R.; de Pablo, A.; Rossi, J.D.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the asymptotic behaviour of nonnegative solutions of the nonlinear diffusion equation in the half-line with a nonlinear boundary condition,{Mathematical expression} with p, q, λ > 0. We describe in terms of p, q and λ when the solution is global in time and when it blows up in finite time. For blow-up solutions we find the blow-up rate and the blow-up set and we describe the asymptotic behaviour close to the blow-up time, showing that a phenomenon of asymptotic simplification takes place. We finally study the appearance of extinction in finite time. © 2007 Elsevier Inc. All rights reserved.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Differ. Equ. 2007;240(1):196-215
- Materia
-
Asymptotic behaviour
Blow-up
Nonlinear boundary conditions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00220396_v240_n1_p196_Ferreira
Ver los metadatos del registro completo
id |
BDUBAFCEN_53e126413430949c365f0c8a9238faf8 |
---|---|
oai_identifier_str |
paperaa:paper_00220396_v240_n1_p196_Ferreira |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Blow-up with logarithmic nonlinearitiesFerreira, R.de Pablo, A.Rossi, J.D.Asymptotic behaviourBlow-upNonlinear boundary conditionsWe study the asymptotic behaviour of nonnegative solutions of the nonlinear diffusion equation in the half-line with a nonlinear boundary condition,{Mathematical expression} with p, q, λ > 0. We describe in terms of p, q and λ when the solution is global in time and when it blows up in finite time. For blow-up solutions we find the blow-up rate and the blow-up set and we describe the asymptotic behaviour close to the blow-up time, showing that a phenomenon of asymptotic simplification takes place. We finally study the appearance of extinction in finite time. © 2007 Elsevier Inc. All rights reserved.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00220396_v240_n1_p196_FerreiraJ. Differ. Equ. 2007;240(1):196-215reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:09Zpaperaa:paper_00220396_v240_n1_p196_FerreiraInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:10.789Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Blow-up with logarithmic nonlinearities |
title |
Blow-up with logarithmic nonlinearities |
spellingShingle |
Blow-up with logarithmic nonlinearities Ferreira, R. Asymptotic behaviour Blow-up Nonlinear boundary conditions |
title_short |
Blow-up with logarithmic nonlinearities |
title_full |
Blow-up with logarithmic nonlinearities |
title_fullStr |
Blow-up with logarithmic nonlinearities |
title_full_unstemmed |
Blow-up with logarithmic nonlinearities |
title_sort |
Blow-up with logarithmic nonlinearities |
dc.creator.none.fl_str_mv |
Ferreira, R. de Pablo, A. Rossi, J.D. |
author |
Ferreira, R. |
author_facet |
Ferreira, R. de Pablo, A. Rossi, J.D. |
author_role |
author |
author2 |
de Pablo, A. Rossi, J.D. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Asymptotic behaviour Blow-up Nonlinear boundary conditions |
topic |
Asymptotic behaviour Blow-up Nonlinear boundary conditions |
dc.description.none.fl_txt_mv |
We study the asymptotic behaviour of nonnegative solutions of the nonlinear diffusion equation in the half-line with a nonlinear boundary condition,{Mathematical expression} with p, q, λ > 0. We describe in terms of p, q and λ when the solution is global in time and when it blows up in finite time. For blow-up solutions we find the blow-up rate and the blow-up set and we describe the asymptotic behaviour close to the blow-up time, showing that a phenomenon of asymptotic simplification takes place. We finally study the appearance of extinction in finite time. © 2007 Elsevier Inc. All rights reserved. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We study the asymptotic behaviour of nonnegative solutions of the nonlinear diffusion equation in the half-line with a nonlinear boundary condition,{Mathematical expression} with p, q, λ > 0. We describe in terms of p, q and λ when the solution is global in time and when it blows up in finite time. For blow-up solutions we find the blow-up rate and the blow-up set and we describe the asymptotic behaviour close to the blow-up time, showing that a phenomenon of asymptotic simplification takes place. We finally study the appearance of extinction in finite time. © 2007 Elsevier Inc. All rights reserved. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00220396_v240_n1_p196_Ferreira |
url |
http://hdl.handle.net/20.500.12110/paper_00220396_v240_n1_p196_Ferreira |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Differ. Equ. 2007;240(1):196-215 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618740779450368 |
score |
13.070432 |