Generalized Self-Similarity
- Autores
- Cabrelli, C.A.; Molter, U.M.
- Año de publicación
- 1999
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove the existence of Lpfunctions satisfying a kind of self-similarity condition. This is achieved by solving a functional equation by means of the construction of a contractive operator on an appropriate functional space. The solution, a fixed point of the operator, can be obtained by an iterative process, making this model very suitable to use in applications such as fractal image and signal compression. On the other hand, this "generalized self-similarity equation" includes matrix refinement equations of the typef(x)=∑ckf(Ax-k) which are central in the construction of wavelets and multiwavelets. The results of this paper will therefore yield conditions for the existence of Lp-refinable functions in a very general setting. © 1998 Academic Press.
Fil:Cabrelli, C.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Molter, U.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Anal. Appl. 1999;230(1):251-260
- Materia
-
Dilation equation
Fixed points
Fractals
Functional equation
Inverse problem for fractals
Refinement equation
Self-similarity
Wavelets - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0022247X_v230_n1_p251_Cabrelli
Ver los metadatos del registro completo
id |
BDUBAFCEN_dc8782b14d37e94ac5ad2bd360574d49 |
---|---|
oai_identifier_str |
paperaa:paper_0022247X_v230_n1_p251_Cabrelli |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Generalized Self-SimilarityCabrelli, C.A.Molter, U.M.Dilation equationFixed pointsFractalsFunctional equationInverse problem for fractalsRefinement equationSelf-similarityWaveletsWe prove the existence of Lpfunctions satisfying a kind of self-similarity condition. This is achieved by solving a functional equation by means of the construction of a contractive operator on an appropriate functional space. The solution, a fixed point of the operator, can be obtained by an iterative process, making this model very suitable to use in applications such as fractal image and signal compression. On the other hand, this "generalized self-similarity equation" includes matrix refinement equations of the typef(x)=∑ckf(Ax-k) which are central in the construction of wavelets and multiwavelets. The results of this paper will therefore yield conditions for the existence of Lp-refinable functions in a very general setting. © 1998 Academic Press.Fil:Cabrelli, C.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Molter, U.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.1999info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v230_n1_p251_CabrelliJ. Math. Anal. Appl. 1999;230(1):251-260reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:09Zpaperaa:paper_0022247X_v230_n1_p251_CabrelliInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:10.248Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Generalized Self-Similarity |
title |
Generalized Self-Similarity |
spellingShingle |
Generalized Self-Similarity Cabrelli, C.A. Dilation equation Fixed points Fractals Functional equation Inverse problem for fractals Refinement equation Self-similarity Wavelets |
title_short |
Generalized Self-Similarity |
title_full |
Generalized Self-Similarity |
title_fullStr |
Generalized Self-Similarity |
title_full_unstemmed |
Generalized Self-Similarity |
title_sort |
Generalized Self-Similarity |
dc.creator.none.fl_str_mv |
Cabrelli, C.A. Molter, U.M. |
author |
Cabrelli, C.A. |
author_facet |
Cabrelli, C.A. Molter, U.M. |
author_role |
author |
author2 |
Molter, U.M. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Dilation equation Fixed points Fractals Functional equation Inverse problem for fractals Refinement equation Self-similarity Wavelets |
topic |
Dilation equation Fixed points Fractals Functional equation Inverse problem for fractals Refinement equation Self-similarity Wavelets |
dc.description.none.fl_txt_mv |
We prove the existence of Lpfunctions satisfying a kind of self-similarity condition. This is achieved by solving a functional equation by means of the construction of a contractive operator on an appropriate functional space. The solution, a fixed point of the operator, can be obtained by an iterative process, making this model very suitable to use in applications such as fractal image and signal compression. On the other hand, this "generalized self-similarity equation" includes matrix refinement equations of the typef(x)=∑ckf(Ax-k) which are central in the construction of wavelets and multiwavelets. The results of this paper will therefore yield conditions for the existence of Lp-refinable functions in a very general setting. © 1998 Academic Press. Fil:Cabrelli, C.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Molter, U.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We prove the existence of Lpfunctions satisfying a kind of self-similarity condition. This is achieved by solving a functional equation by means of the construction of a contractive operator on an appropriate functional space. The solution, a fixed point of the operator, can be obtained by an iterative process, making this model very suitable to use in applications such as fractal image and signal compression. On the other hand, this "generalized self-similarity equation" includes matrix refinement equations of the typef(x)=∑ckf(Ax-k) which are central in the construction of wavelets and multiwavelets. The results of this paper will therefore yield conditions for the existence of Lp-refinable functions in a very general setting. © 1998 Academic Press. |
publishDate |
1999 |
dc.date.none.fl_str_mv |
1999 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0022247X_v230_n1_p251_Cabrelli |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v230_n1_p251_Cabrelli |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Math. Anal. Appl. 1999;230(1):251-260 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618739904937984 |
score |
13.070432 |