Hochschild duality, localization, and smash products

Autores
Farinati, M.
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we study the class of algebras satisfying a duality property with respect to Hochschild homology and cohomology, as in [Proc. Amer. Math. Soc. 126 (1998) 1345-1348]. More precisely, we consider the class of algebras A such that there exists an invertible bimodule U and an integer number d with the property H• (A, M) ≅ Hd-• (A, U ⊗A M), for all A-bimodules M. We show that this class is closed under localization and under smash products with respect to Hopf algebras satisfying also the duality property. We also illustrate the subtlety on dualities with sma sh products developing in detail the example S(V) # G, the crossed product of the symmetric algebra on a vector space and a finite group acting linearly on V. © 2004 Elsevier Inc. All rights reserved.
Fil:Farinati, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Algebra 2005;284(1):415-434
Materia
Duality
Hochschild homology and cohomology
Localization
Smash products
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00218693_v284_n1_p415_Farinati

id BDUBAFCEN_593743ce5c6e10db0f88deb6ceae1981
oai_identifier_str paperaa:paper_00218693_v284_n1_p415_Farinati
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Hochschild duality, localization, and smash productsFarinati, M.DualityHochschild homology and cohomologyLocalizationSmash productsIn this work we study the class of algebras satisfying a duality property with respect to Hochschild homology and cohomology, as in [Proc. Amer. Math. Soc. 126 (1998) 1345-1348]. More precisely, we consider the class of algebras A such that there exists an invertible bimodule U and an integer number d with the property H• (A, M) ≅ Hd-• (A, U ⊗A M), for all A-bimodules M. We show that this class is closed under localization and under smash products with respect to Hopf algebras satisfying also the duality property. We also illustrate the subtlety on dualities with sma sh products developing in detail the example S(V) # G, the crossed product of the symmetric algebra on a vector space and a finite group acting linearly on V. © 2004 Elsevier Inc. All rights reserved.Fil:Farinati, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00218693_v284_n1_p415_FarinatiJ. Algebra 2005;284(1):415-434reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:00Zpaperaa:paper_00218693_v284_n1_p415_FarinatiInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:01.836Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Hochschild duality, localization, and smash products
title Hochschild duality, localization, and smash products
spellingShingle Hochschild duality, localization, and smash products
Farinati, M.
Duality
Hochschild homology and cohomology
Localization
Smash products
title_short Hochschild duality, localization, and smash products
title_full Hochschild duality, localization, and smash products
title_fullStr Hochschild duality, localization, and smash products
title_full_unstemmed Hochschild duality, localization, and smash products
title_sort Hochschild duality, localization, and smash products
dc.creator.none.fl_str_mv Farinati, M.
author Farinati, M.
author_facet Farinati, M.
author_role author
dc.subject.none.fl_str_mv Duality
Hochschild homology and cohomology
Localization
Smash products
topic Duality
Hochschild homology and cohomology
Localization
Smash products
dc.description.none.fl_txt_mv In this work we study the class of algebras satisfying a duality property with respect to Hochschild homology and cohomology, as in [Proc. Amer. Math. Soc. 126 (1998) 1345-1348]. More precisely, we consider the class of algebras A such that there exists an invertible bimodule U and an integer number d with the property H• (A, M) ≅ Hd-• (A, U ⊗A M), for all A-bimodules M. We show that this class is closed under localization and under smash products with respect to Hopf algebras satisfying also the duality property. We also illustrate the subtlety on dualities with sma sh products developing in detail the example S(V) # G, the crossed product of the symmetric algebra on a vector space and a finite group acting linearly on V. © 2004 Elsevier Inc. All rights reserved.
Fil:Farinati, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In this work we study the class of algebras satisfying a duality property with respect to Hochschild homology and cohomology, as in [Proc. Amer. Math. Soc. 126 (1998) 1345-1348]. More precisely, we consider the class of algebras A such that there exists an invertible bimodule U and an integer number d with the property H• (A, M) ≅ Hd-• (A, U ⊗A M), for all A-bimodules M. We show that this class is closed under localization and under smash products with respect to Hopf algebras satisfying also the duality property. We also illustrate the subtlety on dualities with sma sh products developing in detail the example S(V) # G, the crossed product of the symmetric algebra on a vector space and a finite group acting linearly on V. © 2004 Elsevier Inc. All rights reserved.
publishDate 2005
dc.date.none.fl_str_mv 2005
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00218693_v284_n1_p415_Farinati
url http://hdl.handle.net/20.500.12110/paper_00218693_v284_n1_p415_Farinati
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Algebra 2005;284(1):415-434
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618737346412544
score 13.070432