Implicit Lagrange-Routh equations and Dirac reduction

Autores
García-Toraño Andrés, Eduardo; Mestdag, Tom; Yoshimura, Hiroaki
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we make a generalization of Routh´s reduction method for Lagrangian systems with symmetry to the case where not any regularity condition is imposed on the Lagrangian. First, we show how implicit Lagrange-Routh equations can be obtained from the Hamilton-Pontryagin principle, by making use of an anholonomic frame, and how these equations can be reduced. To do this, we keep the momentum constraint implicit throughout and we make use of a Routhian function defined on a certain submanifold of the Pontryagin bundle. Then, we show how the reduced implicit Lagrange-Routh equations can be described in the context of dynamical systems associated to Dirac structures, in which we fully utilize a symmetry reduction procedure for implicit Hamiltonian systems with symmetry.
Fil: García-Toraño Andrés, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. University of Ostrava; República Checa
Fil: Mestdag, Tom. University of Ghent; Bélgica
Fil: Yoshimura, Hiroaki. Waseda University; Japón
Materia
DIRAC STRUCTURES
HAMILTON-PONTRYAGIN PRINCIPLE
IMPLICIT LAGRANGE-ROUTH EQUATIONS
ROUTH REDUCTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/48403

id CONICETDig_d807afc5de29372f861e87274ddda485
oai_identifier_str oai:ri.conicet.gov.ar:11336/48403
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Implicit Lagrange-Routh equations and Dirac reductionGarcía-Toraño Andrés, EduardoMestdag, TomYoshimura, HiroakiDIRAC STRUCTURESHAMILTON-PONTRYAGIN PRINCIPLEIMPLICIT LAGRANGE-ROUTH EQUATIONSROUTH REDUCTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we make a generalization of Routh´s reduction method for Lagrangian systems with symmetry to the case where not any regularity condition is imposed on the Lagrangian. First, we show how implicit Lagrange-Routh equations can be obtained from the Hamilton-Pontryagin principle, by making use of an anholonomic frame, and how these equations can be reduced. To do this, we keep the momentum constraint implicit throughout and we make use of a Routhian function defined on a certain submanifold of the Pontryagin bundle. Then, we show how the reduced implicit Lagrange-Routh equations can be described in the context of dynamical systems associated to Dirac structures, in which we fully utilize a symmetry reduction procedure for implicit Hamiltonian systems with symmetry.Fil: García-Toraño Andrés, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. University of Ostrava; República ChecaFil: Mestdag, Tom. University of Ghent; BélgicaFil: Yoshimura, Hiroaki. Waseda University; JapónElsevier Science2016-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48403García-Toraño Andrés, Eduardo; Mestdag, Tom; Yoshimura, Hiroaki; Implicit Lagrange-Routh equations and Dirac reduction; Elsevier Science; Journal Of Geometry And Physics; 104; 6-2016; 291-3040393-0440CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2016.02.010info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0393044016300365info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:54:16Zoai:ri.conicet.gov.ar:11336/48403instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:54:16.95CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Implicit Lagrange-Routh equations and Dirac reduction
title Implicit Lagrange-Routh equations and Dirac reduction
spellingShingle Implicit Lagrange-Routh equations and Dirac reduction
García-Toraño Andrés, Eduardo
DIRAC STRUCTURES
HAMILTON-PONTRYAGIN PRINCIPLE
IMPLICIT LAGRANGE-ROUTH EQUATIONS
ROUTH REDUCTION
title_short Implicit Lagrange-Routh equations and Dirac reduction
title_full Implicit Lagrange-Routh equations and Dirac reduction
title_fullStr Implicit Lagrange-Routh equations and Dirac reduction
title_full_unstemmed Implicit Lagrange-Routh equations and Dirac reduction
title_sort Implicit Lagrange-Routh equations and Dirac reduction
dc.creator.none.fl_str_mv García-Toraño Andrés, Eduardo
Mestdag, Tom
Yoshimura, Hiroaki
author García-Toraño Andrés, Eduardo
author_facet García-Toraño Andrés, Eduardo
Mestdag, Tom
Yoshimura, Hiroaki
author_role author
author2 Mestdag, Tom
Yoshimura, Hiroaki
author2_role author
author
dc.subject.none.fl_str_mv DIRAC STRUCTURES
HAMILTON-PONTRYAGIN PRINCIPLE
IMPLICIT LAGRANGE-ROUTH EQUATIONS
ROUTH REDUCTION
topic DIRAC STRUCTURES
HAMILTON-PONTRYAGIN PRINCIPLE
IMPLICIT LAGRANGE-ROUTH EQUATIONS
ROUTH REDUCTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, we make a generalization of Routh´s reduction method for Lagrangian systems with symmetry to the case where not any regularity condition is imposed on the Lagrangian. First, we show how implicit Lagrange-Routh equations can be obtained from the Hamilton-Pontryagin principle, by making use of an anholonomic frame, and how these equations can be reduced. To do this, we keep the momentum constraint implicit throughout and we make use of a Routhian function defined on a certain submanifold of the Pontryagin bundle. Then, we show how the reduced implicit Lagrange-Routh equations can be described in the context of dynamical systems associated to Dirac structures, in which we fully utilize a symmetry reduction procedure for implicit Hamiltonian systems with symmetry.
Fil: García-Toraño Andrés, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. University of Ostrava; República Checa
Fil: Mestdag, Tom. University of Ghent; Bélgica
Fil: Yoshimura, Hiroaki. Waseda University; Japón
description In this paper, we make a generalization of Routh´s reduction method for Lagrangian systems with symmetry to the case where not any regularity condition is imposed on the Lagrangian. First, we show how implicit Lagrange-Routh equations can be obtained from the Hamilton-Pontryagin principle, by making use of an anholonomic frame, and how these equations can be reduced. To do this, we keep the momentum constraint implicit throughout and we make use of a Routhian function defined on a certain submanifold of the Pontryagin bundle. Then, we show how the reduced implicit Lagrange-Routh equations can be described in the context of dynamical systems associated to Dirac structures, in which we fully utilize a symmetry reduction procedure for implicit Hamiltonian systems with symmetry.
publishDate 2016
dc.date.none.fl_str_mv 2016-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/48403
García-Toraño Andrés, Eduardo; Mestdag, Tom; Yoshimura, Hiroaki; Implicit Lagrange-Routh equations and Dirac reduction; Elsevier Science; Journal Of Geometry And Physics; 104; 6-2016; 291-304
0393-0440
CONICET Digital
CONICET
url http://hdl.handle.net/11336/48403
identifier_str_mv García-Toraño Andrés, Eduardo; Mestdag, Tom; Yoshimura, Hiroaki; Implicit Lagrange-Routh equations and Dirac reduction; Elsevier Science; Journal Of Geometry And Physics; 104; 6-2016; 291-304
0393-0440
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2016.02.010
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0393044016300365
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613649748983808
score 13.070432