Implicit Lagrange-Routh equations and Dirac reduction
- Autores
- García-Toraño Andrés, Eduardo; Mestdag, Tom; Yoshimura, Hiroaki
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we make a generalization of Routh´s reduction method for Lagrangian systems with symmetry to the case where not any regularity condition is imposed on the Lagrangian. First, we show how implicit Lagrange-Routh equations can be obtained from the Hamilton-Pontryagin principle, by making use of an anholonomic frame, and how these equations can be reduced. To do this, we keep the momentum constraint implicit throughout and we make use of a Routhian function defined on a certain submanifold of the Pontryagin bundle. Then, we show how the reduced implicit Lagrange-Routh equations can be described in the context of dynamical systems associated to Dirac structures, in which we fully utilize a symmetry reduction procedure for implicit Hamiltonian systems with symmetry.
Fil: García-Toraño Andrés, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. University of Ostrava; República Checa
Fil: Mestdag, Tom. University of Ghent; Bélgica
Fil: Yoshimura, Hiroaki. Waseda University; Japón - Materia
-
DIRAC STRUCTURES
HAMILTON-PONTRYAGIN PRINCIPLE
IMPLICIT LAGRANGE-ROUTH EQUATIONS
ROUTH REDUCTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/48403
Ver los metadatos del registro completo
id |
CONICETDig_d807afc5de29372f861e87274ddda485 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/48403 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Implicit Lagrange-Routh equations and Dirac reductionGarcía-Toraño Andrés, EduardoMestdag, TomYoshimura, HiroakiDIRAC STRUCTURESHAMILTON-PONTRYAGIN PRINCIPLEIMPLICIT LAGRANGE-ROUTH EQUATIONSROUTH REDUCTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we make a generalization of Routh´s reduction method for Lagrangian systems with symmetry to the case where not any regularity condition is imposed on the Lagrangian. First, we show how implicit Lagrange-Routh equations can be obtained from the Hamilton-Pontryagin principle, by making use of an anholonomic frame, and how these equations can be reduced. To do this, we keep the momentum constraint implicit throughout and we make use of a Routhian function defined on a certain submanifold of the Pontryagin bundle. Then, we show how the reduced implicit Lagrange-Routh equations can be described in the context of dynamical systems associated to Dirac structures, in which we fully utilize a symmetry reduction procedure for implicit Hamiltonian systems with symmetry.Fil: García-Toraño Andrés, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. University of Ostrava; República ChecaFil: Mestdag, Tom. University of Ghent; BélgicaFil: Yoshimura, Hiroaki. Waseda University; JapónElsevier Science2016-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48403García-Toraño Andrés, Eduardo; Mestdag, Tom; Yoshimura, Hiroaki; Implicit Lagrange-Routh equations and Dirac reduction; Elsevier Science; Journal Of Geometry And Physics; 104; 6-2016; 291-3040393-0440CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2016.02.010info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0393044016300365info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:54:16Zoai:ri.conicet.gov.ar:11336/48403instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:54:16.95CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Implicit Lagrange-Routh equations and Dirac reduction |
title |
Implicit Lagrange-Routh equations and Dirac reduction |
spellingShingle |
Implicit Lagrange-Routh equations and Dirac reduction García-Toraño Andrés, Eduardo DIRAC STRUCTURES HAMILTON-PONTRYAGIN PRINCIPLE IMPLICIT LAGRANGE-ROUTH EQUATIONS ROUTH REDUCTION |
title_short |
Implicit Lagrange-Routh equations and Dirac reduction |
title_full |
Implicit Lagrange-Routh equations and Dirac reduction |
title_fullStr |
Implicit Lagrange-Routh equations and Dirac reduction |
title_full_unstemmed |
Implicit Lagrange-Routh equations and Dirac reduction |
title_sort |
Implicit Lagrange-Routh equations and Dirac reduction |
dc.creator.none.fl_str_mv |
García-Toraño Andrés, Eduardo Mestdag, Tom Yoshimura, Hiroaki |
author |
García-Toraño Andrés, Eduardo |
author_facet |
García-Toraño Andrés, Eduardo Mestdag, Tom Yoshimura, Hiroaki |
author_role |
author |
author2 |
Mestdag, Tom Yoshimura, Hiroaki |
author2_role |
author author |
dc.subject.none.fl_str_mv |
DIRAC STRUCTURES HAMILTON-PONTRYAGIN PRINCIPLE IMPLICIT LAGRANGE-ROUTH EQUATIONS ROUTH REDUCTION |
topic |
DIRAC STRUCTURES HAMILTON-PONTRYAGIN PRINCIPLE IMPLICIT LAGRANGE-ROUTH EQUATIONS ROUTH REDUCTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we make a generalization of Routh´s reduction method for Lagrangian systems with symmetry to the case where not any regularity condition is imposed on the Lagrangian. First, we show how implicit Lagrange-Routh equations can be obtained from the Hamilton-Pontryagin principle, by making use of an anholonomic frame, and how these equations can be reduced. To do this, we keep the momentum constraint implicit throughout and we make use of a Routhian function defined on a certain submanifold of the Pontryagin bundle. Then, we show how the reduced implicit Lagrange-Routh equations can be described in the context of dynamical systems associated to Dirac structures, in which we fully utilize a symmetry reduction procedure for implicit Hamiltonian systems with symmetry. Fil: García-Toraño Andrés, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. University of Ostrava; República Checa Fil: Mestdag, Tom. University of Ghent; Bélgica Fil: Yoshimura, Hiroaki. Waseda University; Japón |
description |
In this paper, we make a generalization of Routh´s reduction method for Lagrangian systems with symmetry to the case where not any regularity condition is imposed on the Lagrangian. First, we show how implicit Lagrange-Routh equations can be obtained from the Hamilton-Pontryagin principle, by making use of an anholonomic frame, and how these equations can be reduced. To do this, we keep the momentum constraint implicit throughout and we make use of a Routhian function defined on a certain submanifold of the Pontryagin bundle. Then, we show how the reduced implicit Lagrange-Routh equations can be described in the context of dynamical systems associated to Dirac structures, in which we fully utilize a symmetry reduction procedure for implicit Hamiltonian systems with symmetry. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/48403 García-Toraño Andrés, Eduardo; Mestdag, Tom; Yoshimura, Hiroaki; Implicit Lagrange-Routh equations and Dirac reduction; Elsevier Science; Journal Of Geometry And Physics; 104; 6-2016; 291-304 0393-0440 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/48403 |
identifier_str_mv |
García-Toraño Andrés, Eduardo; Mestdag, Tom; Yoshimura, Hiroaki; Implicit Lagrange-Routh equations and Dirac reduction; Elsevier Science; Journal Of Geometry And Physics; 104; 6-2016; 291-304 0393-0440 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2016.02.010 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0393044016300365 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613649748983808 |
score |
13.070432 |