Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions
- Autores
- Acosta, G.; Bonder, J.F.; Groisman, P.; Rossi, J.D.
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the asymptotic behavior of a semi-discrete numerical approximation for a pair of heat equations ut = Δu, vt = Δv in Ω × (0, T); fully coupled by the boundary conditions ∂u/∂η = up11vp12, ∂v/∂η = up21vp22 on ∂Ω × (0, T), where Ω is a bounded smooth domain in ℝd. We focus in the existence or not of non-simultaneous blow-up for a semi-discrete approximation (U, V). We prove that if U blows up in finite time then V can fail to blow up if and only if p11 > 1 and p21 < 2(p11 - 1), which is the same condition as the one for non-simultaneous blow-up in the continuous problem. Moreover, we find that if the continuous problem has non-simultaneous blow-up then the same is true for the discrete one. We also prove some results about the convergence of the scheme and the convergence of the blow-up times.
Fil:Acosta, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Groisman, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Math. Model. Numer. Anal. 2002;36(1):55-68
- Materia
-
Asymptotic behavior
Blow-up
Non-linear boundary conditions
Parabolic equations
Semi-discretization in space - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0764583X_v36_n1_p55_Acosta
Ver los metadatos del registro completo
id |
BDUBAFCEN_66259b1903fc6c6ee0e204da99120dab |
---|---|
oai_identifier_str |
paperaa:paper_0764583X_v36_n1_p55_Acosta |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditionsAcosta, G.Bonder, J.F.Groisman, P.Rossi, J.D.Asymptotic behaviorBlow-upNon-linear boundary conditionsParabolic equationsSemi-discretization in spaceWe study the asymptotic behavior of a semi-discrete numerical approximation for a pair of heat equations ut = Δu, vt = Δv in Ω × (0, T); fully coupled by the boundary conditions ∂u/∂η = up11vp12, ∂v/∂η = up21vp22 on ∂Ω × (0, T), where Ω is a bounded smooth domain in ℝd. We focus in the existence or not of non-simultaneous blow-up for a semi-discrete approximation (U, V). We prove that if U blows up in finite time then V can fail to blow up if and only if p11 > 1 and p21 < 2(p11 - 1), which is the same condition as the one for non-simultaneous blow-up in the continuous problem. Moreover, we find that if the continuous problem has non-simultaneous blow-up then the same is true for the discrete one. We also prove some results about the convergence of the scheme and the convergence of the blow-up times.Fil:Acosta, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Groisman, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2002info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0764583X_v36_n1_p55_AcostaMath. Model. Numer. Anal. 2002;36(1):55-68reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:03Zpaperaa:paper_0764583X_v36_n1_p55_AcostaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:04.683Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions |
title |
Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions |
spellingShingle |
Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions Acosta, G. Asymptotic behavior Blow-up Non-linear boundary conditions Parabolic equations Semi-discretization in space |
title_short |
Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions |
title_full |
Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions |
title_fullStr |
Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions |
title_full_unstemmed |
Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions |
title_sort |
Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions |
dc.creator.none.fl_str_mv |
Acosta, G. Bonder, J.F. Groisman, P. Rossi, J.D. |
author |
Acosta, G. |
author_facet |
Acosta, G. Bonder, J.F. Groisman, P. Rossi, J.D. |
author_role |
author |
author2 |
Bonder, J.F. Groisman, P. Rossi, J.D. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Asymptotic behavior Blow-up Non-linear boundary conditions Parabolic equations Semi-discretization in space |
topic |
Asymptotic behavior Blow-up Non-linear boundary conditions Parabolic equations Semi-discretization in space |
dc.description.none.fl_txt_mv |
We study the asymptotic behavior of a semi-discrete numerical approximation for a pair of heat equations ut = Δu, vt = Δv in Ω × (0, T); fully coupled by the boundary conditions ∂u/∂η = up11vp12, ∂v/∂η = up21vp22 on ∂Ω × (0, T), where Ω is a bounded smooth domain in ℝd. We focus in the existence or not of non-simultaneous blow-up for a semi-discrete approximation (U, V). We prove that if U blows up in finite time then V can fail to blow up if and only if p11 > 1 and p21 < 2(p11 - 1), which is the same condition as the one for non-simultaneous blow-up in the continuous problem. Moreover, we find that if the continuous problem has non-simultaneous blow-up then the same is true for the discrete one. We also prove some results about the convergence of the scheme and the convergence of the blow-up times. Fil:Acosta, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Groisman, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We study the asymptotic behavior of a semi-discrete numerical approximation for a pair of heat equations ut = Δu, vt = Δv in Ω × (0, T); fully coupled by the boundary conditions ∂u/∂η = up11vp12, ∂v/∂η = up21vp22 on ∂Ω × (0, T), where Ω is a bounded smooth domain in ℝd. We focus in the existence or not of non-simultaneous blow-up for a semi-discrete approximation (U, V). We prove that if U blows up in finite time then V can fail to blow up if and only if p11 > 1 and p21 < 2(p11 - 1), which is the same condition as the one for non-simultaneous blow-up in the continuous problem. Moreover, we find that if the continuous problem has non-simultaneous blow-up then the same is true for the discrete one. We also prove some results about the convergence of the scheme and the convergence of the blow-up times. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0764583X_v36_n1_p55_Acosta |
url |
http://hdl.handle.net/20.500.12110/paper_0764583X_v36_n1_p55_Acosta |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Math. Model. Numer. Anal. 2002;36(1):55-68 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618738616238080 |
score |
13.070432 |