Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions

Autores
Acosta, G.; Bonder, J.F.; Groisman, P.; Rossi, J.D.
Año de publicación
2002
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the asymptotic behavior of a semi-discrete numerical approximation for a pair of heat equations ut = Δu, vt = Δv in Ω × (0, T); fully coupled by the boundary conditions ∂u/∂η = up11vp12, ∂v/∂η = up21vp22 on ∂Ω × (0, T), where Ω is a bounded smooth domain in ℝd. We focus in the existence or not of non-simultaneous blow-up for a semi-discrete approximation (U, V). We prove that if U blows up in finite time then V can fail to blow up if and only if p11 > 1 and p21 < 2(p11 - 1), which is the same condition as the one for non-simultaneous blow-up in the continuous problem. Moreover, we find that if the continuous problem has non-simultaneous blow-up then the same is true for the discrete one. We also prove some results about the convergence of the scheme and the convergence of the blow-up times.
Fil:Acosta, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Groisman, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Math. Model. Numer. Anal. 2002;36(1):55-68
Materia
Asymptotic behavior
Blow-up
Non-linear boundary conditions
Parabolic equations
Semi-discretization in space
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0764583X_v36_n1_p55_Acosta

id BDUBAFCEN_66259b1903fc6c6ee0e204da99120dab
oai_identifier_str paperaa:paper_0764583X_v36_n1_p55_Acosta
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditionsAcosta, G.Bonder, J.F.Groisman, P.Rossi, J.D.Asymptotic behaviorBlow-upNon-linear boundary conditionsParabolic equationsSemi-discretization in spaceWe study the asymptotic behavior of a semi-discrete numerical approximation for a pair of heat equations ut = Δu, vt = Δv in Ω × (0, T); fully coupled by the boundary conditions ∂u/∂η = up11vp12, ∂v/∂η = up21vp22 on ∂Ω × (0, T), where Ω is a bounded smooth domain in ℝd. We focus in the existence or not of non-simultaneous blow-up for a semi-discrete approximation (U, V). We prove that if U blows up in finite time then V can fail to blow up if and only if p11 &gt; 1 and p21 &lt; 2(p11 - 1), which is the same condition as the one for non-simultaneous blow-up in the continuous problem. Moreover, we find that if the continuous problem has non-simultaneous blow-up then the same is true for the discrete one. We also prove some results about the convergence of the scheme and the convergence of the blow-up times.Fil:Acosta, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Groisman, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2002info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0764583X_v36_n1_p55_AcostaMath. Model. Numer. Anal. 2002;36(1):55-68reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:03Zpaperaa:paper_0764583X_v36_n1_p55_AcostaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:04.683Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions
title Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions
spellingShingle Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions
Acosta, G.
Asymptotic behavior
Blow-up
Non-linear boundary conditions
Parabolic equations
Semi-discretization in space
title_short Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions
title_full Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions
title_fullStr Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions
title_full_unstemmed Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions
title_sort Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions
dc.creator.none.fl_str_mv Acosta, G.
Bonder, J.F.
Groisman, P.
Rossi, J.D.
author Acosta, G.
author_facet Acosta, G.
Bonder, J.F.
Groisman, P.
Rossi, J.D.
author_role author
author2 Bonder, J.F.
Groisman, P.
Rossi, J.D.
author2_role author
author
author
dc.subject.none.fl_str_mv Asymptotic behavior
Blow-up
Non-linear boundary conditions
Parabolic equations
Semi-discretization in space
topic Asymptotic behavior
Blow-up
Non-linear boundary conditions
Parabolic equations
Semi-discretization in space
dc.description.none.fl_txt_mv We study the asymptotic behavior of a semi-discrete numerical approximation for a pair of heat equations ut = Δu, vt = Δv in Ω × (0, T); fully coupled by the boundary conditions ∂u/∂η = up11vp12, ∂v/∂η = up21vp22 on ∂Ω × (0, T), where Ω is a bounded smooth domain in ℝd. We focus in the existence or not of non-simultaneous blow-up for a semi-discrete approximation (U, V). We prove that if U blows up in finite time then V can fail to blow up if and only if p11 &gt; 1 and p21 &lt; 2(p11 - 1), which is the same condition as the one for non-simultaneous blow-up in the continuous problem. Moreover, we find that if the continuous problem has non-simultaneous blow-up then the same is true for the discrete one. We also prove some results about the convergence of the scheme and the convergence of the blow-up times.
Fil:Acosta, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Groisman, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We study the asymptotic behavior of a semi-discrete numerical approximation for a pair of heat equations ut = Δu, vt = Δv in Ω × (0, T); fully coupled by the boundary conditions ∂u/∂η = up11vp12, ∂v/∂η = up21vp22 on ∂Ω × (0, T), where Ω is a bounded smooth domain in ℝd. We focus in the existence or not of non-simultaneous blow-up for a semi-discrete approximation (U, V). We prove that if U blows up in finite time then V can fail to blow up if and only if p11 &gt; 1 and p21 &lt; 2(p11 - 1), which is the same condition as the one for non-simultaneous blow-up in the continuous problem. Moreover, we find that if the continuous problem has non-simultaneous blow-up then the same is true for the discrete one. We also prove some results about the convergence of the scheme and the convergence of the blow-up times.
publishDate 2002
dc.date.none.fl_str_mv 2002
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0764583X_v36_n1_p55_Acosta
url http://hdl.handle.net/20.500.12110/paper_0764583X_v36_n1_p55_Acosta
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Math. Model. Numer. Anal. 2002;36(1):55-68
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618738616238080
score 13.070432