Complete Blow-up and Avalanche Formation for a Parabolic System with Non-Simultaneous Blow-up
- Autores
- Brändle, Cristina; Quirós, Fernando; Rossi, Julio Daniel
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the possibility of defining a nontrivial continuation after the blow-up time for a system of two heat equations with a nonlinear coupling at the boundary. It turns out that any possible continuation that verify a maximum principle is identically infinity after the blow-up time, that is, both components blow up completely. We also analyze the propagation of the singularity to the whole space, the avalanche, when blow-up is non-simultaneous.
Fil: Brändle, Cristina. Universidad Carlos III de Madrid. Departamento de Matemáticas; Argentina
Fil: Quirós, Fernando. Universidad Autónoma de Madrid; España
Fil: Rossi, Julio Daniel. Universidad Autónoma de Madrid; España. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Complete blow-up
Parabolic system
Nonlinear boundary conditions
Avalanche - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/16376
Ver los metadatos del registro completo
id |
CONICETDig_5f32638a4789006a1aa2e4248e72d9e5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/16376 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Complete Blow-up and Avalanche Formation for a Parabolic System with Non-Simultaneous Blow-upBrändle, CristinaQuirós, FernandoRossi, Julio DanielComplete blow-upParabolic systemNonlinear boundary conditionsAvalanchehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the possibility of defining a nontrivial continuation after the blow-up time for a system of two heat equations with a nonlinear coupling at the boundary. It turns out that any possible continuation that verify a maximum principle is identically infinity after the blow-up time, that is, both components blow up completely. We also analyze the propagation of the singularity to the whole space, the avalanche, when blow-up is non-simultaneous.Fil: Brändle, Cristina. Universidad Carlos III de Madrid. Departamento de Matemáticas; ArgentinaFil: Quirós, Fernando. Universidad Autónoma de Madrid; EspañaFil: Rossi, Julio Daniel. Universidad Autónoma de Madrid; España. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaDe Gruyter2010-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16376Brändle, Cristina; Quirós, Fernando; Rossi, Julio Daniel; Complete Blow-up and Avalanche Formation for a Parabolic System with Non-Simultaneous Blow-up; De Gruyter; Advanced Nonlinear Studies; 10; 3; 8-2010; 659-6791536-13652169-0375enginfo:eu-repo/semantics/altIdentifier/doi/10.1515/ans-2010-0308info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ans.2010.10.issue-3/ans-2010-0308/ans-2010-0308.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:15:17Zoai:ri.conicet.gov.ar:11336/16376instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:15:17.365CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Complete Blow-up and Avalanche Formation for a Parabolic System with Non-Simultaneous Blow-up |
title |
Complete Blow-up and Avalanche Formation for a Parabolic System with Non-Simultaneous Blow-up |
spellingShingle |
Complete Blow-up and Avalanche Formation for a Parabolic System with Non-Simultaneous Blow-up Brändle, Cristina Complete blow-up Parabolic system Nonlinear boundary conditions Avalanche |
title_short |
Complete Blow-up and Avalanche Formation for a Parabolic System with Non-Simultaneous Blow-up |
title_full |
Complete Blow-up and Avalanche Formation for a Parabolic System with Non-Simultaneous Blow-up |
title_fullStr |
Complete Blow-up and Avalanche Formation for a Parabolic System with Non-Simultaneous Blow-up |
title_full_unstemmed |
Complete Blow-up and Avalanche Formation for a Parabolic System with Non-Simultaneous Blow-up |
title_sort |
Complete Blow-up and Avalanche Formation for a Parabolic System with Non-Simultaneous Blow-up |
dc.creator.none.fl_str_mv |
Brändle, Cristina Quirós, Fernando Rossi, Julio Daniel |
author |
Brändle, Cristina |
author_facet |
Brändle, Cristina Quirós, Fernando Rossi, Julio Daniel |
author_role |
author |
author2 |
Quirós, Fernando Rossi, Julio Daniel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Complete blow-up Parabolic system Nonlinear boundary conditions Avalanche |
topic |
Complete blow-up Parabolic system Nonlinear boundary conditions Avalanche |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the possibility of defining a nontrivial continuation after the blow-up time for a system of two heat equations with a nonlinear coupling at the boundary. It turns out that any possible continuation that verify a maximum principle is identically infinity after the blow-up time, that is, both components blow up completely. We also analyze the propagation of the singularity to the whole space, the avalanche, when blow-up is non-simultaneous. Fil: Brändle, Cristina. Universidad Carlos III de Madrid. Departamento de Matemáticas; Argentina Fil: Quirós, Fernando. Universidad Autónoma de Madrid; España Fil: Rossi, Julio Daniel. Universidad Autónoma de Madrid; España. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We study the possibility of defining a nontrivial continuation after the blow-up time for a system of two heat equations with a nonlinear coupling at the boundary. It turns out that any possible continuation that verify a maximum principle is identically infinity after the blow-up time, that is, both components blow up completely. We also analyze the propagation of the singularity to the whole space, the avalanche, when blow-up is non-simultaneous. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/16376 Brändle, Cristina; Quirós, Fernando; Rossi, Julio Daniel; Complete Blow-up and Avalanche Formation for a Parabolic System with Non-Simultaneous Blow-up; De Gruyter; Advanced Nonlinear Studies; 10; 3; 8-2010; 659-679 1536-1365 2169-0375 |
url |
http://hdl.handle.net/11336/16376 |
identifier_str_mv |
Brändle, Cristina; Quirós, Fernando; Rossi, Julio Daniel; Complete Blow-up and Avalanche Formation for a Parabolic System with Non-Simultaneous Blow-up; De Gruyter; Advanced Nonlinear Studies; 10; 3; 8-2010; 659-679 1536-1365 2169-0375 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1515/ans-2010-0308 info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ans.2010.10.issue-3/ans-2010-0308/ans-2010-0308.xml |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614087731838976 |
score |
13.070432 |