Dualidades en teorías de campos conformes no-racionales y sus aplicaciones en teorías de cuerdas

Autores
Nicolás, Lorena
Año de publicación
2010
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Giribet, Gastón Enrique
Descripción
En el presente trabajo de tesis estudiamos las dualidades que conectan distintas teorías de campos conformes no-racionales bidimensionales, poniendo especial atención a la dualidad que existe entre la teoría de Liouville y el modelo Wess-Zumino-Novikov-Witten formulado sobre la variedad SL(2,R). Estudiamos varias aplicaciones de esto: Como primera aplicación, analizamos la auto-dualidad de la teoría de Liouville y mostramos, a partir de esta, una realización física de la dualidad de Langlands en funciones de correlación o del modelo Wess-Zumino-Novikov-Witten. Estudiamos luego una familia de teorías conformes biparamétricas, de las cuales tanto la teoría de Liouville cuanto el modelo Wess-Zumino-Novikov-Witten son casos particulares. Calculamos explícitamente funciones de correlación de 2 y 3-puntos de estas teoría ́Basándonos en nuestra observación sobre la dualidad de Langlands, mostramos que el modelo WZNW aparece doblemente repre- sentado en la familia biparamétrica de CFTs, lo cual se relaciona con la existencia de un segundo operador de apantallamiento en la teoría Como otra aplicación comparamos las contribuciones a las amplitudes de 3-puntos de los distintos sectores de la geometría AdS_3 × S^3 × T^4 , analizamos con detalle cómo la relación entre Liouville y Wess-Zumino-Novikov-Witten permite entender el acuerdo exacto entre observables del borde y del bulk en este ejemplo particular de la conjetura de Maldacena. Nuestro enfoque pone de manifiesto el importante papel que desempeñs la supersimetría para el cálculo, lo que se desprende de nuestro análisis detallado de cómo el modelo SU(2) y el modelo SL(2,R) se relacionan mediante una extensión analítica
In the present thesis we study the dualities which connect different non-rational two-dimensional conformal field theories, paying special attention to the duality that exists between Liouville and the Wess-Zumino-Novikov-Witten model formulated on a SL(2,R) manifold. We study several applications of this relation: As a first application, we analyze the Liouville self-duality and show, from this one, a physical realization of the Langlands duality in correlation functions of the Wess-Zumino-Novikov-Witten model. We study then a family of biparametric conformal theories, from which so much Liouville theory as the Wess-Zumino-Novikov-Witten model are particular cases. We explicitly compute 2 and 3-points correlation functions in these theories. Based on our observation on Lang- lands duality, we show that the WZNW model appears represented twice in the bipara- metric family of CFTs, which is related to the existence of a second operator screening in the theory. As another application, we compare the contributions to the 3-point scattering amplitudes from different sectors of AdS_3 × S^3 × T^4 , analizing closely how the relation between Liouville theory and the Wess-Zumino-Novikov-Witten model enables us to un- derstand the exact agreement between bulk and boundary obsevables in this particular example of the Maldacena’s conjecture. Our approach reveals the important role that supersymmetry plays on the computation; this comes as a result of our detailed analysis about how the SU(2) model and the SL(2,R) model are related by an analytic extension.
Fil: Nicolás, Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Materia
TEORIA DE CAMPOS CONFORMES
TEORIA DE LIOUVILLE
MODELO WESS-ZUMINO-NOVIKOV-WITTEN
CONFORMAL FIELD THEORY
LIOUVILLE FIELD THEORY
WESS-ZUMINO-NOVIKOV-WITTEN MODEL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
tesis:tesis_n4770_Nicolas

id BDUBAFCEN_2c50c1f01ef9cf16f787699b4839b86d
oai_identifier_str tesis:tesis_n4770_Nicolas
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Dualidades en teorías de campos conformes no-racionales y sus aplicaciones en teorías de cuerdasDualities in non-rational conformal field theories and its applications in string theoriesNicolás, LorenaTEORIA DE CAMPOS CONFORMESTEORIA DE LIOUVILLEMODELO WESS-ZUMINO-NOVIKOV-WITTENCONFORMAL FIELD THEORYLIOUVILLE FIELD THEORYWESS-ZUMINO-NOVIKOV-WITTEN MODELEn el presente trabajo de tesis estudiamos las dualidades que conectan distintas teorías de campos conformes no-racionales bidimensionales, poniendo especial atención a la dualidad que existe entre la teoría de Liouville y el modelo Wess-Zumino-Novikov-Witten formulado sobre la variedad SL(2,R). Estudiamos varias aplicaciones de esto: Como primera aplicación, analizamos la auto-dualidad de la teoría de Liouville y mostramos, a partir de esta, una realización física de la dualidad de Langlands en funciones de correlación o del modelo Wess-Zumino-Novikov-Witten. Estudiamos luego una familia de teorías conformes biparamétricas, de las cuales tanto la teoría de Liouville cuanto el modelo Wess-Zumino-Novikov-Witten son casos particulares. Calculamos explícitamente funciones de correlación de 2 y 3-puntos de estas teoría ́Basándonos en nuestra observación sobre la dualidad de Langlands, mostramos que el modelo WZNW aparece doblemente repre- sentado en la familia biparamétrica de CFTs, lo cual se relaciona con la existencia de un segundo operador de apantallamiento en la teoría Como otra aplicación comparamos las contribuciones a las amplitudes de 3-puntos de los distintos sectores de la geometría AdS_3 × S^3 × T^4 , analizamos con detalle cómo la relación entre Liouville y Wess-Zumino-Novikov-Witten permite entender el acuerdo exacto entre observables del borde y del bulk en este ejemplo particular de la conjetura de Maldacena. Nuestro enfoque pone de manifiesto el importante papel que desempeñs la supersimetría para el cálculo, lo que se desprende de nuestro análisis detallado de cómo el modelo SU(2) y el modelo SL(2,R) se relacionan mediante una extensión analíticaIn the present thesis we study the dualities which connect different non-rational two-dimensional conformal field theories, paying special attention to the duality that exists between Liouville and the Wess-Zumino-Novikov-Witten model formulated on a SL(2,R) manifold. We study several applications of this relation: As a first application, we analyze the Liouville self-duality and show, from this one, a physical realization of the Langlands duality in correlation functions of the Wess-Zumino-Novikov-Witten model. We study then a family of biparametric conformal theories, from which so much Liouville theory as the Wess-Zumino-Novikov-Witten model are particular cases. We explicitly compute 2 and 3-points correlation functions in these theories. Based on our observation on Lang- lands duality, we show that the WZNW model appears represented twice in the bipara- metric family of CFTs, which is related to the existence of a second operator screening in the theory. As another application, we compare the contributions to the 3-point scattering amplitudes from different sectors of AdS_3 × S^3 × T^4 , analizing closely how the relation between Liouville theory and the Wess-Zumino-Novikov-Witten model enables us to un- derstand the exact agreement between bulk and boundary obsevables in this particular example of the Maldacena’s conjecture. Our approach reveals the important role that supersymmetry plays on the computation; this comes as a result of our detailed analysis about how the SU(2) model and the SL(2,R) model are related by an analytic extension.Fil: Nicolás, Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesGiribet, Gastón Enrique2010info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://hdl.handle.net/20.500.12110/tesis_n4770_Nicolasspainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-09-29T13:42:05Ztesis:tesis_n4770_NicolasInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:06.905Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Dualidades en teorías de campos conformes no-racionales y sus aplicaciones en teorías de cuerdas
Dualities in non-rational conformal field theories and its applications in string theories
title Dualidades en teorías de campos conformes no-racionales y sus aplicaciones en teorías de cuerdas
spellingShingle Dualidades en teorías de campos conformes no-racionales y sus aplicaciones en teorías de cuerdas
Nicolás, Lorena
TEORIA DE CAMPOS CONFORMES
TEORIA DE LIOUVILLE
MODELO WESS-ZUMINO-NOVIKOV-WITTEN
CONFORMAL FIELD THEORY
LIOUVILLE FIELD THEORY
WESS-ZUMINO-NOVIKOV-WITTEN MODEL
title_short Dualidades en teorías de campos conformes no-racionales y sus aplicaciones en teorías de cuerdas
title_full Dualidades en teorías de campos conformes no-racionales y sus aplicaciones en teorías de cuerdas
title_fullStr Dualidades en teorías de campos conformes no-racionales y sus aplicaciones en teorías de cuerdas
title_full_unstemmed Dualidades en teorías de campos conformes no-racionales y sus aplicaciones en teorías de cuerdas
title_sort Dualidades en teorías de campos conformes no-racionales y sus aplicaciones en teorías de cuerdas
dc.creator.none.fl_str_mv Nicolás, Lorena
author Nicolás, Lorena
author_facet Nicolás, Lorena
author_role author
dc.contributor.none.fl_str_mv Giribet, Gastón Enrique
dc.subject.none.fl_str_mv TEORIA DE CAMPOS CONFORMES
TEORIA DE LIOUVILLE
MODELO WESS-ZUMINO-NOVIKOV-WITTEN
CONFORMAL FIELD THEORY
LIOUVILLE FIELD THEORY
WESS-ZUMINO-NOVIKOV-WITTEN MODEL
topic TEORIA DE CAMPOS CONFORMES
TEORIA DE LIOUVILLE
MODELO WESS-ZUMINO-NOVIKOV-WITTEN
CONFORMAL FIELD THEORY
LIOUVILLE FIELD THEORY
WESS-ZUMINO-NOVIKOV-WITTEN MODEL
dc.description.none.fl_txt_mv En el presente trabajo de tesis estudiamos las dualidades que conectan distintas teorías de campos conformes no-racionales bidimensionales, poniendo especial atención a la dualidad que existe entre la teoría de Liouville y el modelo Wess-Zumino-Novikov-Witten formulado sobre la variedad SL(2,R). Estudiamos varias aplicaciones de esto: Como primera aplicación, analizamos la auto-dualidad de la teoría de Liouville y mostramos, a partir de esta, una realización física de la dualidad de Langlands en funciones de correlación o del modelo Wess-Zumino-Novikov-Witten. Estudiamos luego una familia de teorías conformes biparamétricas, de las cuales tanto la teoría de Liouville cuanto el modelo Wess-Zumino-Novikov-Witten son casos particulares. Calculamos explícitamente funciones de correlación de 2 y 3-puntos de estas teoría ́Basándonos en nuestra observación sobre la dualidad de Langlands, mostramos que el modelo WZNW aparece doblemente repre- sentado en la familia biparamétrica de CFTs, lo cual se relaciona con la existencia de un segundo operador de apantallamiento en la teoría Como otra aplicación comparamos las contribuciones a las amplitudes de 3-puntos de los distintos sectores de la geometría AdS_3 × S^3 × T^4 , analizamos con detalle cómo la relación entre Liouville y Wess-Zumino-Novikov-Witten permite entender el acuerdo exacto entre observables del borde y del bulk en este ejemplo particular de la conjetura de Maldacena. Nuestro enfoque pone de manifiesto el importante papel que desempeñs la supersimetría para el cálculo, lo que se desprende de nuestro análisis detallado de cómo el modelo SU(2) y el modelo SL(2,R) se relacionan mediante una extensión analítica
In the present thesis we study the dualities which connect different non-rational two-dimensional conformal field theories, paying special attention to the duality that exists between Liouville and the Wess-Zumino-Novikov-Witten model formulated on a SL(2,R) manifold. We study several applications of this relation: As a first application, we analyze the Liouville self-duality and show, from this one, a physical realization of the Langlands duality in correlation functions of the Wess-Zumino-Novikov-Witten model. We study then a family of biparametric conformal theories, from which so much Liouville theory as the Wess-Zumino-Novikov-Witten model are particular cases. We explicitly compute 2 and 3-points correlation functions in these theories. Based on our observation on Lang- lands duality, we show that the WZNW model appears represented twice in the bipara- metric family of CFTs, which is related to the existence of a second operator screening in the theory. As another application, we compare the contributions to the 3-point scattering amplitudes from different sectors of AdS_3 × S^3 × T^4 , analizing closely how the relation between Liouville theory and the Wess-Zumino-Novikov-Witten model enables us to un- derstand the exact agreement between bulk and boundary obsevables in this particular example of the Maldacena’s conjecture. Our approach reveals the important role that supersymmetry plays on the computation; this comes as a result of our detailed analysis about how the SU(2) model and the SL(2,R) model are related by an analytic extension.
Fil: Nicolás, Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description En el presente trabajo de tesis estudiamos las dualidades que conectan distintas teorías de campos conformes no-racionales bidimensionales, poniendo especial atención a la dualidad que existe entre la teoría de Liouville y el modelo Wess-Zumino-Novikov-Witten formulado sobre la variedad SL(2,R). Estudiamos varias aplicaciones de esto: Como primera aplicación, analizamos la auto-dualidad de la teoría de Liouville y mostramos, a partir de esta, una realización física de la dualidad de Langlands en funciones de correlación o del modelo Wess-Zumino-Novikov-Witten. Estudiamos luego una familia de teorías conformes biparamétricas, de las cuales tanto la teoría de Liouville cuanto el modelo Wess-Zumino-Novikov-Witten son casos particulares. Calculamos explícitamente funciones de correlación de 2 y 3-puntos de estas teoría ́Basándonos en nuestra observación sobre la dualidad de Langlands, mostramos que el modelo WZNW aparece doblemente repre- sentado en la familia biparamétrica de CFTs, lo cual se relaciona con la existencia de un segundo operador de apantallamiento en la teoría Como otra aplicación comparamos las contribuciones a las amplitudes de 3-puntos de los distintos sectores de la geometría AdS_3 × S^3 × T^4 , analizamos con detalle cómo la relación entre Liouville y Wess-Zumino-Novikov-Witten permite entender el acuerdo exacto entre observables del borde y del bulk en este ejemplo particular de la conjetura de Maldacena. Nuestro enfoque pone de manifiesto el importante papel que desempeñs la supersimetría para el cálculo, lo que se desprende de nuestro análisis detallado de cómo el modelo SU(2) y el modelo SL(2,R) se relacionan mediante una extensión analítica
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv https://hdl.handle.net/20.500.12110/tesis_n4770_Nicolas
url https://hdl.handle.net/20.500.12110/tesis_n4770_Nicolas
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
dc.source.none.fl_str_mv reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618718676516864
score 13.070432