Closed formula for univariate subresultants in multiple roots
- Autores
- D'Andrea, Carlos; Krick, Teresa Elena Genoveva; Szanto, Agnes; Valdettaro, Marcelo Alejandro
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We generalize Sylvester single sums to multisets and show that these sums compute subresultants of two univariate polynomials as a function of their roots independently of their multiplicity structure. This is the first closed formula for subresultants in terms of roots that works for arbitrary polynomials, previous efforts only handled special cases. Our extension involves in some cases confluent Schur polynomials and is obtained by using multivariate symmetric interpolation via an Exchange Lemma.
Fil: D'Andrea, Carlos. Universidad de Barcelona; España
Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Szanto, Agnes. North Carolina State University; Estados Unidos
Fil: Valdettaro, Marcelo Alejandro. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
EXCHANGE LEMMA
FORMULAS IN ROOTS
SCHUR FUNCTIONS
SUBRESULTANTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/117681
Ver los metadatos del registro completo
id |
CONICETDig_82f8280327434b36ca4ff1a421537215 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/117681 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Closed formula for univariate subresultants in multiple rootsD'Andrea, CarlosKrick, Teresa Elena GenovevaSzanto, AgnesValdettaro, Marcelo AlejandroEXCHANGE LEMMAFORMULAS IN ROOTSSCHUR FUNCTIONSSUBRESULTANTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We generalize Sylvester single sums to multisets and show that these sums compute subresultants of two univariate polynomials as a function of their roots independently of their multiplicity structure. This is the first closed formula for subresultants in terms of roots that works for arbitrary polynomials, previous efforts only handled special cases. Our extension involves in some cases confluent Schur polynomials and is obtained by using multivariate symmetric interpolation via an Exchange Lemma.Fil: D'Andrea, Carlos. Universidad de Barcelona; EspañaFil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Szanto, Agnes. North Carolina State University; Estados UnidosFil: Valdettaro, Marcelo Alejandro. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science Inc2019-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/117681D'Andrea, Carlos; Krick, Teresa Elena Genoveva; Szanto, Agnes; Valdettaro, Marcelo Alejandro; Closed formula for univariate subresultants in multiple roots; Elsevier Science Inc; Linear Algebra and its Applications; 565; 3-2019; 123-1550024-3795CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2018.12.010info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0024379518305731?via%3Dihubinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1612.05160info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:54:57Zoai:ri.conicet.gov.ar:11336/117681instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:54:57.629CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Closed formula for univariate subresultants in multiple roots |
title |
Closed formula for univariate subresultants in multiple roots |
spellingShingle |
Closed formula for univariate subresultants in multiple roots D'Andrea, Carlos EXCHANGE LEMMA FORMULAS IN ROOTS SCHUR FUNCTIONS SUBRESULTANTS |
title_short |
Closed formula for univariate subresultants in multiple roots |
title_full |
Closed formula for univariate subresultants in multiple roots |
title_fullStr |
Closed formula for univariate subresultants in multiple roots |
title_full_unstemmed |
Closed formula for univariate subresultants in multiple roots |
title_sort |
Closed formula for univariate subresultants in multiple roots |
dc.creator.none.fl_str_mv |
D'Andrea, Carlos Krick, Teresa Elena Genoveva Szanto, Agnes Valdettaro, Marcelo Alejandro |
author |
D'Andrea, Carlos |
author_facet |
D'Andrea, Carlos Krick, Teresa Elena Genoveva Szanto, Agnes Valdettaro, Marcelo Alejandro |
author_role |
author |
author2 |
Krick, Teresa Elena Genoveva Szanto, Agnes Valdettaro, Marcelo Alejandro |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
EXCHANGE LEMMA FORMULAS IN ROOTS SCHUR FUNCTIONS SUBRESULTANTS |
topic |
EXCHANGE LEMMA FORMULAS IN ROOTS SCHUR FUNCTIONS SUBRESULTANTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We generalize Sylvester single sums to multisets and show that these sums compute subresultants of two univariate polynomials as a function of their roots independently of their multiplicity structure. This is the first closed formula for subresultants in terms of roots that works for arbitrary polynomials, previous efforts only handled special cases. Our extension involves in some cases confluent Schur polynomials and is obtained by using multivariate symmetric interpolation via an Exchange Lemma. Fil: D'Andrea, Carlos. Universidad de Barcelona; España Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Szanto, Agnes. North Carolina State University; Estados Unidos Fil: Valdettaro, Marcelo Alejandro. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We generalize Sylvester single sums to multisets and show that these sums compute subresultants of two univariate polynomials as a function of their roots independently of their multiplicity structure. This is the first closed formula for subresultants in terms of roots that works for arbitrary polynomials, previous efforts only handled special cases. Our extension involves in some cases confluent Schur polynomials and is obtained by using multivariate symmetric interpolation via an Exchange Lemma. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/117681 D'Andrea, Carlos; Krick, Teresa Elena Genoveva; Szanto, Agnes; Valdettaro, Marcelo Alejandro; Closed formula for univariate subresultants in multiple roots; Elsevier Science Inc; Linear Algebra and its Applications; 565; 3-2019; 123-155 0024-3795 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/117681 |
identifier_str_mv |
D'Andrea, Carlos; Krick, Teresa Elena Genoveva; Szanto, Agnes; Valdettaro, Marcelo Alejandro; Closed formula for univariate subresultants in multiple roots; Elsevier Science Inc; Linear Algebra and its Applications; 565; 3-2019; 123-155 0024-3795 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2018.12.010 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0024379518305731?via%3Dihub info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1612.05160 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc |
publisher.none.fl_str_mv |
Elsevier Science Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606204556771328 |
score |
13.001348 |