Lowness properties and approximations of the jump
- Autores
- Figueira, S.; Nies, A.; Stephan, F.
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study and compare two combinatorial lowness notions: strong jump-traceability and well-approximability of the jump, by strengthening the notion of jump-traceability and super-lowness for sets of natural numbers. A computable non-decreasing unbounded function h is called an order function. Informally, a set A is strongly jump-traceable if for each order function h, for each input e one may effectively enumerate a set Te of possible values for the jump JA (e), and the number of values enumerated is at most h (e). A′ is well-approximable if can be effectively approximated with less than h (x) changes at input x, for each order function h. We prove that there is a strongly jump-traceable set which is not computable, and that if A′ is well-approximable then A is strongly jump-traceable. For r.e. sets, the converse holds as well. We characterize jump-traceability and strong jump-traceability in terms of Kolmogorov complexity. We also investigate other properties of these lowness properties. © 2007 Elsevier B.V. All rights reserved.
Fil:Figueira, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Ann. Pure Appl. Logic 2008;152(1-3):51-66
- Materia
-
ω-r.e.
K-triviality
Kolmogorov complexity
Lowness
Traceability - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_01680072_v152_n1-3_p51_Figueira
Ver los metadatos del registro completo
| id |
BDUBAFCEN_e2bf4d7547915484cca50b7d28520208 |
|---|---|
| oai_identifier_str |
paperaa:paper_01680072_v152_n1-3_p51_Figueira |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
Lowness properties and approximations of the jumpFigueira, S.Nies, A.Stephan, F.ω-r.e.K-trivialityKolmogorov complexityLownessTraceabilityWe study and compare two combinatorial lowness notions: strong jump-traceability and well-approximability of the jump, by strengthening the notion of jump-traceability and super-lowness for sets of natural numbers. A computable non-decreasing unbounded function h is called an order function. Informally, a set A is strongly jump-traceable if for each order function h, for each input e one may effectively enumerate a set Te of possible values for the jump JA (e), and the number of values enumerated is at most h (e). A′ is well-approximable if can be effectively approximated with less than h (x) changes at input x, for each order function h. We prove that there is a strongly jump-traceable set which is not computable, and that if A′ is well-approximable then A is strongly jump-traceable. For r.e. sets, the converse holds as well. We characterize jump-traceability and strong jump-traceability in terms of Kolmogorov complexity. We also investigate other properties of these lowness properties. © 2007 Elsevier B.V. All rights reserved.Fil:Figueira, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_01680072_v152_n1-3_p51_FigueiraAnn. Pure Appl. Logic 2008;152(1-3):51-66reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-16T09:30:14Zpaperaa:paper_01680072_v152_n1-3_p51_FigueiraInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:30:15.357Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
Lowness properties and approximations of the jump |
| title |
Lowness properties and approximations of the jump |
| spellingShingle |
Lowness properties and approximations of the jump Figueira, S. ω-r.e. K-triviality Kolmogorov complexity Lowness Traceability |
| title_short |
Lowness properties and approximations of the jump |
| title_full |
Lowness properties and approximations of the jump |
| title_fullStr |
Lowness properties and approximations of the jump |
| title_full_unstemmed |
Lowness properties and approximations of the jump |
| title_sort |
Lowness properties and approximations of the jump |
| dc.creator.none.fl_str_mv |
Figueira, S. Nies, A. Stephan, F. |
| author |
Figueira, S. |
| author_facet |
Figueira, S. Nies, A. Stephan, F. |
| author_role |
author |
| author2 |
Nies, A. Stephan, F. |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
ω-r.e. K-triviality Kolmogorov complexity Lowness Traceability |
| topic |
ω-r.e. K-triviality Kolmogorov complexity Lowness Traceability |
| dc.description.none.fl_txt_mv |
We study and compare two combinatorial lowness notions: strong jump-traceability and well-approximability of the jump, by strengthening the notion of jump-traceability and super-lowness for sets of natural numbers. A computable non-decreasing unbounded function h is called an order function. Informally, a set A is strongly jump-traceable if for each order function h, for each input e one may effectively enumerate a set Te of possible values for the jump JA (e), and the number of values enumerated is at most h (e). A′ is well-approximable if can be effectively approximated with less than h (x) changes at input x, for each order function h. We prove that there is a strongly jump-traceable set which is not computable, and that if A′ is well-approximable then A is strongly jump-traceable. For r.e. sets, the converse holds as well. We characterize jump-traceability and strong jump-traceability in terms of Kolmogorov complexity. We also investigate other properties of these lowness properties. © 2007 Elsevier B.V. All rights reserved. Fil:Figueira, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
We study and compare two combinatorial lowness notions: strong jump-traceability and well-approximability of the jump, by strengthening the notion of jump-traceability and super-lowness for sets of natural numbers. A computable non-decreasing unbounded function h is called an order function. Informally, a set A is strongly jump-traceable if for each order function h, for each input e one may effectively enumerate a set Te of possible values for the jump JA (e), and the number of values enumerated is at most h (e). A′ is well-approximable if can be effectively approximated with less than h (x) changes at input x, for each order function h. We prove that there is a strongly jump-traceable set which is not computable, and that if A′ is well-approximable then A is strongly jump-traceable. For r.e. sets, the converse holds as well. We characterize jump-traceability and strong jump-traceability in terms of Kolmogorov complexity. We also investigate other properties of these lowness properties. © 2007 Elsevier B.V. All rights reserved. |
| publishDate |
2008 |
| dc.date.none.fl_str_mv |
2008 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_01680072_v152_n1-3_p51_Figueira |
| url |
http://hdl.handle.net/20.500.12110/paper_01680072_v152_n1-3_p51_Figueira |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
Ann. Pure Appl. Logic 2008;152(1-3):51-66 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1846142848539295744 |
| score |
12.712165 |