Lowness properties and approximations of the jump

Autores
Figueira, S.; Nies, A.; Stephan, F.
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study and compare two combinatorial lowness notions: strong jump-traceability and well-approximability of the jump, by strengthening the notion of jump-traceability and super-lowness for sets of natural numbers. A computable non-decreasing unbounded function h is called an order function. Informally, a set A is strongly jump-traceable if for each order function h, for each input e one may effectively enumerate a set Te of possible values for the jump JA (e), and the number of values enumerated is at most h (e). A′ is well-approximable if can be effectively approximated with less than h (x) changes at input x, for each order function h. We prove that there is a strongly jump-traceable set which is not computable, and that if A′ is well-approximable then A is strongly jump-traceable. For r.e. sets, the converse holds as well. We characterize jump-traceability and strong jump-traceability in terms of Kolmogorov complexity. We also investigate other properties of these lowness properties. © 2007 Elsevier B.V. All rights reserved.
Fil:Figueira, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Ann. Pure Appl. Logic 2008;152(1-3):51-66
Materia
ω-r.e.
K-triviality
Kolmogorov complexity
Lowness
Traceability
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_01680072_v152_n1-3_p51_Figueira

id BDUBAFCEN_e2bf4d7547915484cca50b7d28520208
oai_identifier_str paperaa:paper_01680072_v152_n1-3_p51_Figueira
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Lowness properties and approximations of the jumpFigueira, S.Nies, A.Stephan, F.ω-r.e.K-trivialityKolmogorov complexityLownessTraceabilityWe study and compare two combinatorial lowness notions: strong jump-traceability and well-approximability of the jump, by strengthening the notion of jump-traceability and super-lowness for sets of natural numbers. A computable non-decreasing unbounded function h is called an order function. Informally, a set A is strongly jump-traceable if for each order function h, for each input e one may effectively enumerate a set Te of possible values for the jump JA (e), and the number of values enumerated is at most h (e). A′ is well-approximable if can be effectively approximated with less than h (x) changes at input x, for each order function h. We prove that there is a strongly jump-traceable set which is not computable, and that if A′ is well-approximable then A is strongly jump-traceable. For r.e. sets, the converse holds as well. We characterize jump-traceability and strong jump-traceability in terms of Kolmogorov complexity. We also investigate other properties of these lowness properties. © 2007 Elsevier B.V. All rights reserved.Fil:Figueira, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_01680072_v152_n1-3_p51_FigueiraAnn. Pure Appl. Logic 2008;152(1-3):51-66reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:41Zpaperaa:paper_01680072_v152_n1-3_p51_FigueiraInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:43.197Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Lowness properties and approximations of the jump
title Lowness properties and approximations of the jump
spellingShingle Lowness properties and approximations of the jump
Figueira, S.
ω-r.e.
K-triviality
Kolmogorov complexity
Lowness
Traceability
title_short Lowness properties and approximations of the jump
title_full Lowness properties and approximations of the jump
title_fullStr Lowness properties and approximations of the jump
title_full_unstemmed Lowness properties and approximations of the jump
title_sort Lowness properties and approximations of the jump
dc.creator.none.fl_str_mv Figueira, S.
Nies, A.
Stephan, F.
author Figueira, S.
author_facet Figueira, S.
Nies, A.
Stephan, F.
author_role author
author2 Nies, A.
Stephan, F.
author2_role author
author
dc.subject.none.fl_str_mv ω-r.e.
K-triviality
Kolmogorov complexity
Lowness
Traceability
topic ω-r.e.
K-triviality
Kolmogorov complexity
Lowness
Traceability
dc.description.none.fl_txt_mv We study and compare two combinatorial lowness notions: strong jump-traceability and well-approximability of the jump, by strengthening the notion of jump-traceability and super-lowness for sets of natural numbers. A computable non-decreasing unbounded function h is called an order function. Informally, a set A is strongly jump-traceable if for each order function h, for each input e one may effectively enumerate a set Te of possible values for the jump JA (e), and the number of values enumerated is at most h (e). A′ is well-approximable if can be effectively approximated with less than h (x) changes at input x, for each order function h. We prove that there is a strongly jump-traceable set which is not computable, and that if A′ is well-approximable then A is strongly jump-traceable. For r.e. sets, the converse holds as well. We characterize jump-traceability and strong jump-traceability in terms of Kolmogorov complexity. We also investigate other properties of these lowness properties. © 2007 Elsevier B.V. All rights reserved.
Fil:Figueira, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We study and compare two combinatorial lowness notions: strong jump-traceability and well-approximability of the jump, by strengthening the notion of jump-traceability and super-lowness for sets of natural numbers. A computable non-decreasing unbounded function h is called an order function. Informally, a set A is strongly jump-traceable if for each order function h, for each input e one may effectively enumerate a set Te of possible values for the jump JA (e), and the number of values enumerated is at most h (e). A′ is well-approximable if can be effectively approximated with less than h (x) changes at input x, for each order function h. We prove that there is a strongly jump-traceable set which is not computable, and that if A′ is well-approximable then A is strongly jump-traceable. For r.e. sets, the converse holds as well. We characterize jump-traceability and strong jump-traceability in terms of Kolmogorov complexity. We also investigate other properties of these lowness properties. © 2007 Elsevier B.V. All rights reserved.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_01680072_v152_n1-3_p51_Figueira
url http://hdl.handle.net/20.500.12110/paper_01680072_v152_n1-3_p51_Figueira
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Ann. Pure Appl. Logic 2008;152(1-3):51-66
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340706463514624
score 12.623145