Posterior Cramér-Rao bounds for discrete-time nonlinear filtering
- Autores
 - Tichavský, Petr; Muravchik, Carlos Horacio; Nehorai, Arye
 - Año de publicación
 - 1998
 - Idioma
 - inglés
 - Tipo de recurso
 - artículo
 - Estado
 - versión publicada
 - Descripción
 - A mean-square error lower bound for the discrete-time nonlinear filtering problem is derived based on the van Trees (1968) (posterior) version of the Cramer-Rao inequality. This lower bound is applicable to multidimensional nonlinear, possibly non-Gaussian, dynamical systems and is more general than the previous bounds in the literature. The case of singular conditional distribution of the one-step-ahead state vector given the present state is considered. The bound is evaluated for three important examples: the recursive estimation of slowly varying parameters of an autoregressive process, tracking a slowly varying frequency of a single cisoid in noise, and tracking parameters of a sinusoidal frequency with sinusoidal phase modulation.
Facultad de Ingeniería
Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales - Materia
 - 
            
        Ingeniería
Electrotecnia
Adaptive estimation
Kalman filtering
nonlinear filters
time-varying systems
tracking filters - Nivel de accesibilidad
 - acceso abierto
 - Condiciones de uso
 - http://creativecommons.org/licenses/by-nc-sa/4.0/
 - Repositorio
 .jpg)
- Institución
 - Universidad Nacional de La Plata
 - OAI Identificador
 - oai:sedici.unlp.edu.ar:10915/122993
 
Ver los metadatos del registro completo
| id | 
                                SEDICI_ffd1989a46c4679bc2159701a3cddc36 | 
      
|---|---|
| oai_identifier_str | 
                                oai:sedici.unlp.edu.ar:10915/122993 | 
      
| network_acronym_str | 
                                SEDICI | 
      
| repository_id_str | 
                                1329 | 
      
| network_name_str | 
                                SEDICI (UNLP) | 
      
| spelling | 
                                Posterior Cramér-Rao bounds for discrete-time nonlinear filteringTichavský, PetrMuravchik, Carlos HoracioNehorai, AryeIngenieríaElectrotecniaAdaptive estimationKalman filteringnonlinear filterstime-varying systemstracking filtersA mean-square error lower bound for the discrete-time nonlinear filtering problem is derived based on the van Trees (1968) (posterior) version of the Cramer-Rao inequality. This lower bound is applicable to multidimensional nonlinear, possibly non-Gaussian, dynamical systems and is more general than the previous bounds in the literature. The case of singular conditional distribution of the one-step-ahead state vector given the present state is considered. The bound is evaluated for three important examples: the recursive estimation of slowly varying parameters of an autoregressive process, tracking a slowly varying frequency of a single cisoid in noise, and tracking parameters of a sinusoidal frequency with sinusoidal phase modulation.Facultad de IngenieríaInstituto de Investigaciones en Electrónica, Control y Procesamiento de Señales1998-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1386-1396http://sedici.unlp.edu.ar/handle/10915/122993enginfo:eu-repo/semantics/altIdentifier/issn/1053-587Xinfo:eu-repo/semantics/altIdentifier/doi/10.1109/78.668800info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-29T15:34:21Zoai:sedici.unlp.edu.ar:10915/122993Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-29 15:34:21.742SEDICI (UNLP) - Universidad Nacional de La Platafalse | 
      
| dc.title.none.fl_str_mv | 
                                Posterior Cramér-Rao bounds for discrete-time nonlinear filtering | 
      
| title | 
                                Posterior Cramér-Rao bounds for discrete-time nonlinear filtering | 
      
| spellingShingle | 
                                Posterior Cramér-Rao bounds for discrete-time nonlinear filtering Tichavský, Petr Ingeniería Electrotecnia Adaptive estimation Kalman filtering nonlinear filters time-varying systems tracking filters  | 
      
| title_short | 
                                Posterior Cramér-Rao bounds for discrete-time nonlinear filtering | 
      
| title_full | 
                                Posterior Cramér-Rao bounds for discrete-time nonlinear filtering | 
      
| title_fullStr | 
                                Posterior Cramér-Rao bounds for discrete-time nonlinear filtering | 
      
| title_full_unstemmed | 
                                Posterior Cramér-Rao bounds for discrete-time nonlinear filtering | 
      
| title_sort | 
                                Posterior Cramér-Rao bounds for discrete-time nonlinear filtering | 
      
| dc.creator.none.fl_str_mv | 
                                Tichavský, Petr Muravchik, Carlos Horacio Nehorai, Arye  | 
      
| author | 
                                Tichavský, Petr | 
      
| author_facet | 
                                Tichavský, Petr Muravchik, Carlos Horacio Nehorai, Arye  | 
      
| author_role | 
                                author | 
      
| author2 | 
                                Muravchik, Carlos Horacio Nehorai, Arye  | 
      
| author2_role | 
                                author author  | 
      
| dc.subject.none.fl_str_mv | 
                                Ingeniería Electrotecnia Adaptive estimation Kalman filtering nonlinear filters time-varying systems tracking filters  | 
      
| topic | 
                                Ingeniería Electrotecnia Adaptive estimation Kalman filtering nonlinear filters time-varying systems tracking filters  | 
      
| dc.description.none.fl_txt_mv | 
                                A mean-square error lower bound for the discrete-time nonlinear filtering problem is derived based on the van Trees (1968) (posterior) version of the Cramer-Rao inequality. This lower bound is applicable to multidimensional nonlinear, possibly non-Gaussian, dynamical systems and is more general than the previous bounds in the literature. The case of singular conditional distribution of the one-step-ahead state vector given the present state is considered. The bound is evaluated for three important examples: the recursive estimation of slowly varying parameters of an autoregressive process, tracking a slowly varying frequency of a single cisoid in noise, and tracking parameters of a sinusoidal frequency with sinusoidal phase modulation. Facultad de Ingeniería Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales  | 
      
| description | 
                                A mean-square error lower bound for the discrete-time nonlinear filtering problem is derived based on the van Trees (1968) (posterior) version of the Cramer-Rao inequality. This lower bound is applicable to multidimensional nonlinear, possibly non-Gaussian, dynamical systems and is more general than the previous bounds in the literature. The case of singular conditional distribution of the one-step-ahead state vector given the present state is considered. The bound is evaluated for three important examples: the recursive estimation of slowly varying parameters of an autoregressive process, tracking a slowly varying frequency of a single cisoid in noise, and tracking parameters of a sinusoidal frequency with sinusoidal phase modulation. | 
      
| publishDate | 
                                1998 | 
      
| dc.date.none.fl_str_mv | 
                                1998-05 | 
      
| dc.type.none.fl_str_mv | 
                                info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo  | 
      
| format | 
                                article | 
      
| status_str | 
                                publishedVersion | 
      
| dc.identifier.none.fl_str_mv | 
                                http://sedici.unlp.edu.ar/handle/10915/122993 | 
      
| url | 
                                http://sedici.unlp.edu.ar/handle/10915/122993 | 
      
| dc.language.none.fl_str_mv | 
                                eng | 
      
| language | 
                                eng | 
      
| dc.relation.none.fl_str_mv | 
                                info:eu-repo/semantics/altIdentifier/issn/1053-587X info:eu-repo/semantics/altIdentifier/doi/10.1109/78.668800  | 
      
| dc.rights.none.fl_str_mv | 
                                info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)  | 
      
| eu_rights_str_mv | 
                                openAccess | 
      
| rights_invalid_str_mv | 
                                http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)  | 
      
| dc.format.none.fl_str_mv | 
                                application/pdf 1386-1396  | 
      
| dc.source.none.fl_str_mv | 
                                reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP  | 
      
| reponame_str | 
                                SEDICI (UNLP) | 
      
| collection | 
                                SEDICI (UNLP) | 
      
| instname_str | 
                                Universidad Nacional de La Plata | 
      
| instacron_str | 
                                UNLP | 
      
| institution | 
                                UNLP | 
      
| repository.name.fl_str_mv | 
                                SEDICI (UNLP) - Universidad Nacional de La Plata | 
      
| repository.mail.fl_str_mv | 
                                alira@sedici.unlp.edu.ar | 
      
| _version_ | 
                                1847428425945448448 | 
      
| score | 
                                13.10058 |