Posterior Cramér-Rao bounds for discrete-time nonlinear filtering
- Autores
- Tichavský, Petr; Muravchik, Carlos Horacio; Nehorai, Arye
- Año de publicación
- 1998
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A mean-square error lower bound for the discrete-time nonlinear filtering problem is derived based on the van Trees (1968) (posterior) version of the Cramer-Rao inequality. This lower bound is applicable to multidimensional nonlinear, possibly non-Gaussian, dynamical systems and is more general than the previous bounds in the literature. The case of singular conditional distribution of the one-step-ahead state vector given the present state is considered. The bound is evaluated for three important examples: the recursive estimation of slowly varying parameters of an autoregressive process, tracking a slowly varying frequency of a single cisoid in noise, and tracking parameters of a sinusoidal frequency with sinusoidal phase modulation.
Facultad de Ingeniería
Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales - Materia
-
Ingeniería
Electrotecnia
Adaptive estimation
Kalman filtering
nonlinear filters
time-varying systems
tracking filters - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/122993
Ver los metadatos del registro completo
id |
SEDICI_ffd1989a46c4679bc2159701a3cddc36 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/122993 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Posterior Cramér-Rao bounds for discrete-time nonlinear filteringTichavský, PetrMuravchik, Carlos HoracioNehorai, AryeIngenieríaElectrotecniaAdaptive estimationKalman filteringnonlinear filterstime-varying systemstracking filtersA mean-square error lower bound for the discrete-time nonlinear filtering problem is derived based on the van Trees (1968) (posterior) version of the Cramer-Rao inequality. This lower bound is applicable to multidimensional nonlinear, possibly non-Gaussian, dynamical systems and is more general than the previous bounds in the literature. The case of singular conditional distribution of the one-step-ahead state vector given the present state is considered. The bound is evaluated for three important examples: the recursive estimation of slowly varying parameters of an autoregressive process, tracking a slowly varying frequency of a single cisoid in noise, and tracking parameters of a sinusoidal frequency with sinusoidal phase modulation.Facultad de IngenieríaInstituto de Investigaciones en Electrónica, Control y Procesamiento de Señales1998-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1386-1396http://sedici.unlp.edu.ar/handle/10915/122993enginfo:eu-repo/semantics/altIdentifier/issn/1053-587Xinfo:eu-repo/semantics/altIdentifier/doi/10.1109/78.668800info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:29:14Zoai:sedici.unlp.edu.ar:10915/122993Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:29:15.172SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Posterior Cramér-Rao bounds for discrete-time nonlinear filtering |
title |
Posterior Cramér-Rao bounds for discrete-time nonlinear filtering |
spellingShingle |
Posterior Cramér-Rao bounds for discrete-time nonlinear filtering Tichavský, Petr Ingeniería Electrotecnia Adaptive estimation Kalman filtering nonlinear filters time-varying systems tracking filters |
title_short |
Posterior Cramér-Rao bounds for discrete-time nonlinear filtering |
title_full |
Posterior Cramér-Rao bounds for discrete-time nonlinear filtering |
title_fullStr |
Posterior Cramér-Rao bounds for discrete-time nonlinear filtering |
title_full_unstemmed |
Posterior Cramér-Rao bounds for discrete-time nonlinear filtering |
title_sort |
Posterior Cramér-Rao bounds for discrete-time nonlinear filtering |
dc.creator.none.fl_str_mv |
Tichavský, Petr Muravchik, Carlos Horacio Nehorai, Arye |
author |
Tichavský, Petr |
author_facet |
Tichavský, Petr Muravchik, Carlos Horacio Nehorai, Arye |
author_role |
author |
author2 |
Muravchik, Carlos Horacio Nehorai, Arye |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ingeniería Electrotecnia Adaptive estimation Kalman filtering nonlinear filters time-varying systems tracking filters |
topic |
Ingeniería Electrotecnia Adaptive estimation Kalman filtering nonlinear filters time-varying systems tracking filters |
dc.description.none.fl_txt_mv |
A mean-square error lower bound for the discrete-time nonlinear filtering problem is derived based on the van Trees (1968) (posterior) version of the Cramer-Rao inequality. This lower bound is applicable to multidimensional nonlinear, possibly non-Gaussian, dynamical systems and is more general than the previous bounds in the literature. The case of singular conditional distribution of the one-step-ahead state vector given the present state is considered. The bound is evaluated for three important examples: the recursive estimation of slowly varying parameters of an autoregressive process, tracking a slowly varying frequency of a single cisoid in noise, and tracking parameters of a sinusoidal frequency with sinusoidal phase modulation. Facultad de Ingeniería Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales |
description |
A mean-square error lower bound for the discrete-time nonlinear filtering problem is derived based on the van Trees (1968) (posterior) version of the Cramer-Rao inequality. This lower bound is applicable to multidimensional nonlinear, possibly non-Gaussian, dynamical systems and is more general than the previous bounds in the literature. The case of singular conditional distribution of the one-step-ahead state vector given the present state is considered. The bound is evaluated for three important examples: the recursive estimation of slowly varying parameters of an autoregressive process, tracking a slowly varying frequency of a single cisoid in noise, and tracking parameters of a sinusoidal frequency with sinusoidal phase modulation. |
publishDate |
1998 |
dc.date.none.fl_str_mv |
1998-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/122993 |
url |
http://sedici.unlp.edu.ar/handle/10915/122993 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1053-587X info:eu-repo/semantics/altIdentifier/doi/10.1109/78.668800 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1386-1396 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616171688558592 |
score |
13.070432 |