Métodos de lagrangiano aumentado basados en funciones de penalidad no cuadráticas
- Autores
- Sánchez, María Daniela
- Año de publicación
- 2017
- Idioma
- español castellano
- Tipo de recurso
- tesis doctoral
- Estado
- versión aceptada
- Colaborador/a o director/a de tesis
- Schuverdt, M. L.
Echebest, Nélida E. - Descripción
- El proceso del método de Lagrangiano Aumentado genera una sucesión de iteraciones donde cada una de estas es la solución aproximada de un subproblema que involucra una función Lagrangiana Aumentada. El estudio de la convergencia global de este método depende fuertemente de la información utilizada para resolver el subproblema. Cuando se usa información de las primeras derivadas para resolver el subproblema, bajo condiciones de calidad apropiadas, se puede demostrar la convergencia a puntos que satisfacen las condiciones de Karush-Kuhn-Tucker (puntos KKT). Cuando se utiliza información tanto de las primeras como de las segundas derivadas, se demuestra la convergencia, bajo condiciones de calidad adecuadas, a puntos KKT que verifican además una condición de optimalidad de segundo orden. El estudio de condiciones de calidad y condiciones de calidad secuenciales han crecido de manera notoria en los últimos tiempos. La condición más débil que encontramos en la literatura, considerando el método de Lagrangiano Aumentado, involucra la función de penalidad cuadrática. El propósito de este trabajo es estudiar la convergencia global del algoritmo de Lagrangiano Aumentado que considera funciones de penalidad no cuadráticas. Analizamos la convergencia del algoritmo propuesto a puntos que satisfacen las condiciones KKT y, también, la condición de optimalidad necesaria de segundo orden débil. El esquema de generación de las funciones de penalidad Lagrangianas incluye, por ejemplo, la función de penalidad exponencial y la barrera logarítmica sin utilizar hipótesis de convexidad. Para la función de penalidad exponencial, la acotación del parámetro de penalidad es probada utilizando condiciones clásicas.
Doctor en Ciencias Exactas, área Matemática
Universidad Nacional de La Plata
Facultad de Ciencias Exactas - Materia
-
Matemática
lagrangiano aumentado
convergencia global
condiciones de optimalidad
penalidad no cuadrática - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/65191
Ver los metadatos del registro completo
id |
SEDICI_fd84f3eaf9a3b22aa1cf5f25a4a7f9e7 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/65191 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Métodos de lagrangiano aumentado basados en funciones de penalidad no cuadráticasSánchez, María DanielaMatemáticalagrangiano aumentadoconvergencia globalcondiciones de optimalidadpenalidad no cuadráticaEl proceso del método de Lagrangiano Aumentado genera una sucesión de iteraciones donde cada una de estas es la solución aproximada de un subproblema que involucra una función Lagrangiana Aumentada. El estudio de la convergencia global de este método depende fuertemente de la información utilizada para resolver el subproblema. Cuando se usa información de las primeras derivadas para resolver el subproblema, bajo condiciones de calidad apropiadas, se puede demostrar la convergencia a puntos que satisfacen las condiciones de Karush-Kuhn-Tucker (puntos KKT). Cuando se utiliza información tanto de las primeras como de las segundas derivadas, se demuestra la convergencia, bajo condiciones de calidad adecuadas, a puntos KKT que verifican además una condición de optimalidad de segundo orden. El estudio de condiciones de calidad y condiciones de calidad secuenciales han crecido de manera notoria en los últimos tiempos. La condición más débil que encontramos en la literatura, considerando el método de Lagrangiano Aumentado, involucra la función de penalidad cuadrática. El propósito de este trabajo es estudiar la convergencia global del algoritmo de Lagrangiano Aumentado que considera funciones de penalidad no cuadráticas. Analizamos la convergencia del algoritmo propuesto a puntos que satisfacen las condiciones KKT y, también, la condición de optimalidad necesaria de segundo orden débil. El esquema de generación de las funciones de penalidad Lagrangianas incluye, por ejemplo, la función de penalidad exponencial y la barrera logarítmica sin utilizar hipótesis de convexidad. Para la función de penalidad exponencial, la acotación del parámetro de penalidad es probada utilizando condiciones clásicas.Doctor en Ciencias Exactas, área MatemáticaUniversidad Nacional de La PlataFacultad de Ciencias ExactasSchuverdt, M. L.Echebest, Nélida E.2017-12-22info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/65191https://doi.org/10.35537/10915/65191spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:09:32Zoai:sedici.unlp.edu.ar:10915/65191Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:09:32.292SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Métodos de lagrangiano aumentado basados en funciones de penalidad no cuadráticas |
title |
Métodos de lagrangiano aumentado basados en funciones de penalidad no cuadráticas |
spellingShingle |
Métodos de lagrangiano aumentado basados en funciones de penalidad no cuadráticas Sánchez, María Daniela Matemática lagrangiano aumentado convergencia global condiciones de optimalidad penalidad no cuadrática |
title_short |
Métodos de lagrangiano aumentado basados en funciones de penalidad no cuadráticas |
title_full |
Métodos de lagrangiano aumentado basados en funciones de penalidad no cuadráticas |
title_fullStr |
Métodos de lagrangiano aumentado basados en funciones de penalidad no cuadráticas |
title_full_unstemmed |
Métodos de lagrangiano aumentado basados en funciones de penalidad no cuadráticas |
title_sort |
Métodos de lagrangiano aumentado basados en funciones de penalidad no cuadráticas |
dc.creator.none.fl_str_mv |
Sánchez, María Daniela |
author |
Sánchez, María Daniela |
author_facet |
Sánchez, María Daniela |
author_role |
author |
dc.contributor.none.fl_str_mv |
Schuverdt, M. L. Echebest, Nélida E. |
dc.subject.none.fl_str_mv |
Matemática lagrangiano aumentado convergencia global condiciones de optimalidad penalidad no cuadrática |
topic |
Matemática lagrangiano aumentado convergencia global condiciones de optimalidad penalidad no cuadrática |
dc.description.none.fl_txt_mv |
El proceso del método de Lagrangiano Aumentado genera una sucesión de iteraciones donde cada una de estas es la solución aproximada de un subproblema que involucra una función Lagrangiana Aumentada. El estudio de la convergencia global de este método depende fuertemente de la información utilizada para resolver el subproblema. Cuando se usa información de las primeras derivadas para resolver el subproblema, bajo condiciones de calidad apropiadas, se puede demostrar la convergencia a puntos que satisfacen las condiciones de Karush-Kuhn-Tucker (puntos KKT). Cuando se utiliza información tanto de las primeras como de las segundas derivadas, se demuestra la convergencia, bajo condiciones de calidad adecuadas, a puntos KKT que verifican además una condición de optimalidad de segundo orden. El estudio de condiciones de calidad y condiciones de calidad secuenciales han crecido de manera notoria en los últimos tiempos. La condición más débil que encontramos en la literatura, considerando el método de Lagrangiano Aumentado, involucra la función de penalidad cuadrática. El propósito de este trabajo es estudiar la convergencia global del algoritmo de Lagrangiano Aumentado que considera funciones de penalidad no cuadráticas. Analizamos la convergencia del algoritmo propuesto a puntos que satisfacen las condiciones KKT y, también, la condición de optimalidad necesaria de segundo orden débil. El esquema de generación de las funciones de penalidad Lagrangianas incluye, por ejemplo, la función de penalidad exponencial y la barrera logarítmica sin utilizar hipótesis de convexidad. Para la función de penalidad exponencial, la acotación del parámetro de penalidad es probada utilizando condiciones clásicas. Doctor en Ciencias Exactas, área Matemática Universidad Nacional de La Plata Facultad de Ciencias Exactas |
description |
El proceso del método de Lagrangiano Aumentado genera una sucesión de iteraciones donde cada una de estas es la solución aproximada de un subproblema que involucra una función Lagrangiana Aumentada. El estudio de la convergencia global de este método depende fuertemente de la información utilizada para resolver el subproblema. Cuando se usa información de las primeras derivadas para resolver el subproblema, bajo condiciones de calidad apropiadas, se puede demostrar la convergencia a puntos que satisfacen las condiciones de Karush-Kuhn-Tucker (puntos KKT). Cuando se utiliza información tanto de las primeras como de las segundas derivadas, se demuestra la convergencia, bajo condiciones de calidad adecuadas, a puntos KKT que verifican además una condición de optimalidad de segundo orden. El estudio de condiciones de calidad y condiciones de calidad secuenciales han crecido de manera notoria en los últimos tiempos. La condición más débil que encontramos en la literatura, considerando el método de Lagrangiano Aumentado, involucra la función de penalidad cuadrática. El propósito de este trabajo es estudiar la convergencia global del algoritmo de Lagrangiano Aumentado que considera funciones de penalidad no cuadráticas. Analizamos la convergencia del algoritmo propuesto a puntos que satisfacen las condiciones KKT y, también, la condición de optimalidad necesaria de segundo orden débil. El esquema de generación de las funciones de penalidad Lagrangianas incluye, por ejemplo, la función de penalidad exponencial y la barrera logarítmica sin utilizar hipótesis de convexidad. Para la función de penalidad exponencial, la acotación del parámetro de penalidad es probada utilizando condiciones clásicas. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-22 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/acceptedVersion Tesis de doctorado http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
format |
doctoralThesis |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/65191 https://doi.org/10.35537/10915/65191 |
url |
http://sedici.unlp.edu.ar/handle/10915/65191 https://doi.org/10.35537/10915/65191 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615962660175872 |
score |
13.070432 |