Métodos de lagrangiano aumentado basados en funciones de penalidad no cuadráticas

Autores
Sánchez, María Daniela
Año de publicación
2017
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Schuverdt, M. L.
Echebest, Nélida E.
Descripción
El proceso del método de Lagrangiano Aumentado genera una sucesión de iteraciones donde cada una de estas es la solución aproximada de un subproblema que involucra una función Lagrangiana Aumentada. El estudio de la convergencia global de este método depende fuertemente de la información utilizada para resolver el subproblema. Cuando se usa información de las primeras derivadas para resolver el subproblema, bajo condiciones de calidad apropiadas, se puede demostrar la convergencia a puntos que satisfacen las condiciones de Karush-Kuhn-Tucker (puntos KKT). Cuando se utiliza información tanto de las primeras como de las segundas derivadas, se demuestra la convergencia, bajo condiciones de calidad adecuadas, a puntos KKT que verifican además una condición de optimalidad de segundo orden. El estudio de condiciones de calidad y condiciones de calidad secuenciales han crecido de manera notoria en los últimos tiempos. La condición más débil que encontramos en la literatura, considerando el método de Lagrangiano Aumentado, involucra la función de penalidad cuadrática. El propósito de este trabajo es estudiar la convergencia global del algoritmo de Lagrangiano Aumentado que considera funciones de penalidad no cuadráticas. Analizamos la convergencia del algoritmo propuesto a puntos que satisfacen las condiciones KKT y, también, la condición de optimalidad necesaria de segundo orden débil. El esquema de generación de las funciones de penalidad Lagrangianas incluye, por ejemplo, la función de penalidad exponencial y la barrera logarítmica sin utilizar hipótesis de convexidad. Para la función de penalidad exponencial, la acotación del parámetro de penalidad es probada utilizando condiciones clásicas.
Doctor en Ciencias Exactas, área Matemática
Universidad Nacional de La Plata
Facultad de Ciencias Exactas
Materia
Matemática
lagrangiano aumentado
convergencia global
condiciones de optimalidad
penalidad no cuadrática
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/65191

id SEDICI_fd84f3eaf9a3b22aa1cf5f25a4a7f9e7
oai_identifier_str oai:sedici.unlp.edu.ar:10915/65191
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Métodos de lagrangiano aumentado basados en funciones de penalidad no cuadráticasSánchez, María DanielaMatemáticalagrangiano aumentadoconvergencia globalcondiciones de optimalidadpenalidad no cuadráticaEl proceso del método de Lagrangiano Aumentado genera una sucesión de iteraciones donde cada una de estas es la solución aproximada de un subproblema que involucra una función Lagrangiana Aumentada. El estudio de la convergencia global de este método depende fuertemente de la información utilizada para resolver el subproblema. Cuando se usa información de las primeras derivadas para resolver el subproblema, bajo condiciones de calidad apropiadas, se puede demostrar la convergencia a puntos que satisfacen las condiciones de Karush-Kuhn-Tucker (puntos KKT). Cuando se utiliza información tanto de las primeras como de las segundas derivadas, se demuestra la convergencia, bajo condiciones de calidad adecuadas, a puntos KKT que verifican además una condición de optimalidad de segundo orden. El estudio de condiciones de calidad y condiciones de calidad secuenciales han crecido de manera notoria en los últimos tiempos. La condición más débil que encontramos en la literatura, considerando el método de Lagrangiano Aumentado, involucra la función de penalidad cuadrática. El propósito de este trabajo es estudiar la convergencia global del algoritmo de Lagrangiano Aumentado que considera funciones de penalidad no cuadráticas. Analizamos la convergencia del algoritmo propuesto a puntos que satisfacen las condiciones KKT y, también, la condición de optimalidad necesaria de segundo orden débil. El esquema de generación de las funciones de penalidad Lagrangianas incluye, por ejemplo, la función de penalidad exponencial y la barrera logarítmica sin utilizar hipótesis de convexidad. Para la función de penalidad exponencial, la acotación del parámetro de penalidad es probada utilizando condiciones clásicas.Doctor en Ciencias Exactas, área MatemáticaUniversidad Nacional de La PlataFacultad de Ciencias ExactasSchuverdt, M. L.Echebest, Nélida E.2017-12-22info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/65191https://doi.org/10.35537/10915/65191spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:09:32Zoai:sedici.unlp.edu.ar:10915/65191Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:09:32.292SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Métodos de lagrangiano aumentado basados en funciones de penalidad no cuadráticas
title Métodos de lagrangiano aumentado basados en funciones de penalidad no cuadráticas
spellingShingle Métodos de lagrangiano aumentado basados en funciones de penalidad no cuadráticas
Sánchez, María Daniela
Matemática
lagrangiano aumentado
convergencia global
condiciones de optimalidad
penalidad no cuadrática
title_short Métodos de lagrangiano aumentado basados en funciones de penalidad no cuadráticas
title_full Métodos de lagrangiano aumentado basados en funciones de penalidad no cuadráticas
title_fullStr Métodos de lagrangiano aumentado basados en funciones de penalidad no cuadráticas
title_full_unstemmed Métodos de lagrangiano aumentado basados en funciones de penalidad no cuadráticas
title_sort Métodos de lagrangiano aumentado basados en funciones de penalidad no cuadráticas
dc.creator.none.fl_str_mv Sánchez, María Daniela
author Sánchez, María Daniela
author_facet Sánchez, María Daniela
author_role author
dc.contributor.none.fl_str_mv Schuverdt, M. L.
Echebest, Nélida E.
dc.subject.none.fl_str_mv Matemática
lagrangiano aumentado
convergencia global
condiciones de optimalidad
penalidad no cuadrática
topic Matemática
lagrangiano aumentado
convergencia global
condiciones de optimalidad
penalidad no cuadrática
dc.description.none.fl_txt_mv El proceso del método de Lagrangiano Aumentado genera una sucesión de iteraciones donde cada una de estas es la solución aproximada de un subproblema que involucra una función Lagrangiana Aumentada. El estudio de la convergencia global de este método depende fuertemente de la información utilizada para resolver el subproblema. Cuando se usa información de las primeras derivadas para resolver el subproblema, bajo condiciones de calidad apropiadas, se puede demostrar la convergencia a puntos que satisfacen las condiciones de Karush-Kuhn-Tucker (puntos KKT). Cuando se utiliza información tanto de las primeras como de las segundas derivadas, se demuestra la convergencia, bajo condiciones de calidad adecuadas, a puntos KKT que verifican además una condición de optimalidad de segundo orden. El estudio de condiciones de calidad y condiciones de calidad secuenciales han crecido de manera notoria en los últimos tiempos. La condición más débil que encontramos en la literatura, considerando el método de Lagrangiano Aumentado, involucra la función de penalidad cuadrática. El propósito de este trabajo es estudiar la convergencia global del algoritmo de Lagrangiano Aumentado que considera funciones de penalidad no cuadráticas. Analizamos la convergencia del algoritmo propuesto a puntos que satisfacen las condiciones KKT y, también, la condición de optimalidad necesaria de segundo orden débil. El esquema de generación de las funciones de penalidad Lagrangianas incluye, por ejemplo, la función de penalidad exponencial y la barrera logarítmica sin utilizar hipótesis de convexidad. Para la función de penalidad exponencial, la acotación del parámetro de penalidad es probada utilizando condiciones clásicas.
Doctor en Ciencias Exactas, área Matemática
Universidad Nacional de La Plata
Facultad de Ciencias Exactas
description El proceso del método de Lagrangiano Aumentado genera una sucesión de iteraciones donde cada una de estas es la solución aproximada de un subproblema que involucra una función Lagrangiana Aumentada. El estudio de la convergencia global de este método depende fuertemente de la información utilizada para resolver el subproblema. Cuando se usa información de las primeras derivadas para resolver el subproblema, bajo condiciones de calidad apropiadas, se puede demostrar la convergencia a puntos que satisfacen las condiciones de Karush-Kuhn-Tucker (puntos KKT). Cuando se utiliza información tanto de las primeras como de las segundas derivadas, se demuestra la convergencia, bajo condiciones de calidad adecuadas, a puntos KKT que verifican además una condición de optimalidad de segundo orden. El estudio de condiciones de calidad y condiciones de calidad secuenciales han crecido de manera notoria en los últimos tiempos. La condición más débil que encontramos en la literatura, considerando el método de Lagrangiano Aumentado, involucra la función de penalidad cuadrática. El propósito de este trabajo es estudiar la convergencia global del algoritmo de Lagrangiano Aumentado que considera funciones de penalidad no cuadráticas. Analizamos la convergencia del algoritmo propuesto a puntos que satisfacen las condiciones KKT y, también, la condición de optimalidad necesaria de segundo orden débil. El esquema de generación de las funciones de penalidad Lagrangianas incluye, por ejemplo, la función de penalidad exponencial y la barrera logarítmica sin utilizar hipótesis de convexidad. Para la función de penalidad exponencial, la acotación del parámetro de penalidad es probada utilizando condiciones clásicas.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-22
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
Tesis de doctorado
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/65191
https://doi.org/10.35537/10915/65191
url http://sedici.unlp.edu.ar/handle/10915/65191
https://doi.org/10.35537/10915/65191
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615962660175872
score 13.070432