Métodos de Lagrangiano Aumentado basados en funciones de penalidad no cuadráticas
- Autores
- Sanchez, María Daniela
- Año de publicación
- 2017
- Idioma
- español castellano
- Tipo de recurso
- tesis doctoral
- Estado
- versión publicada
- Colaborador/a o director/a de tesis
- Schuverdt, María Laura
Etchebest, Nélida E. - Descripción
- El proceso del método de Lagrangiano Aumentado genera una sucesión de iteraciones donde cada una de estas es la solución aproximada de un subproblema que involucra una función Lagrangiana Aumentada. El estudio de la convergencia global de este método depende fuertemente de la información utilizada para resolver el subproblema. Cuando se usa información de las primeras derivadas para resolver el subproblema, bajo condiciones de calidad apropiadas, se puede demostrar la convergencia a puntos que satisfacen las condiciones de Karush-Kuhn-Tucker (puntos KKT). Cuando se utiliza información tanto de las primeras como de las segundas derivadas, se demuestra la convergencia, bajo condiciones de calidad adecuadas, a puntos KKT que verifican además una condición de optimalidad de segundo orden. El estudio de condiciones de calidad y condiciones de calidad secuenciales han crecido de manera notoria en los últimos tiempos. La condición más débil que encontramos en la literatura, considerando el método de Lagrangiano Aumentado, involucra la función de penalidad cuadrática. El propósito de este trabajo es estudiar la convergencia global del algoritmo de Lagrangiano Aumentado que considera funciones de penalidad no cuadráticas. Analizamos la convergencia del algoritmo propuesto a puntos que satisfacen las condiciones KKT y, también, la condición de optimalidad necesaria de segundo orden débil. El esquema de generación de las funciones de penalidad Lagrangianas incluye, por ejemplo, la función de penalidad exponencial y la barrera logarítmica sin utilizar hipótesis de convexidad. Para la función de penalidad exponencial, la acotación del parámetro de penalidad es probada utilizando condiciones clásicas.
Fil: Sanchez, María Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Autor; - Materia
-
OPTIMIZACION NO LINEAL
CONDICIONES DE OPTIMALIDAD
LAGRANGIANO AUMENTADO
PENALIDAD - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/103919
Ver los metadatos del registro completo
id |
CONICETDig_c8623e76d19ddfca7a6598dc72fe1037 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/103919 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Métodos de Lagrangiano Aumentado basados en funciones de penalidad no cuadráticasSanchez, María DanielaOPTIMIZACION NO LINEALCONDICIONES DE OPTIMALIDADLAGRANGIANO AUMENTADOPENALIDADhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1El proceso del método de Lagrangiano Aumentado genera una sucesión de iteraciones donde cada una de estas es la solución aproximada de un subproblema que involucra una función Lagrangiana Aumentada. El estudio de la convergencia global de este método depende fuertemente de la información utilizada para resolver el subproblema. Cuando se usa información de las primeras derivadas para resolver el subproblema, bajo condiciones de calidad apropiadas, se puede demostrar la convergencia a puntos que satisfacen las condiciones de Karush-Kuhn-Tucker (puntos KKT). Cuando se utiliza información tanto de las primeras como de las segundas derivadas, se demuestra la convergencia, bajo condiciones de calidad adecuadas, a puntos KKT que verifican además una condición de optimalidad de segundo orden. El estudio de condiciones de calidad y condiciones de calidad secuenciales han crecido de manera notoria en los últimos tiempos. La condición más débil que encontramos en la literatura, considerando el método de Lagrangiano Aumentado, involucra la función de penalidad cuadrática. El propósito de este trabajo es estudiar la convergencia global del algoritmo de Lagrangiano Aumentado que considera funciones de penalidad no cuadráticas. Analizamos la convergencia del algoritmo propuesto a puntos que satisfacen las condiciones KKT y, también, la condición de optimalidad necesaria de segundo orden débil. El esquema de generación de las funciones de penalidad Lagrangianas incluye, por ejemplo, la función de penalidad exponencial y la barrera logarítmica sin utilizar hipótesis de convexidad. Para la función de penalidad exponencial, la acotación del parámetro de penalidad es probada utilizando condiciones clásicas.Fil: Sanchez, María Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Autor; Schuverdt, María LauraEtchebest, Nélida E.2017-12-22info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/103919Sanchez, María Daniela; Schuverdt, María Laura; Etchebest, Nélida E.; Métodos de Lagrangiano Aumentado basados en funciones de penalidad no cuadráticas; 22-12-2017CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://sedici.unlp.edu.ar/handle/10915/65191info:eu-repo/semantics/altIdentifier/doi/10.35537/10915/65191info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:05Zoai:ri.conicet.gov.ar:11336/103919instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:06.166CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Métodos de Lagrangiano Aumentado basados en funciones de penalidad no cuadráticas |
title |
Métodos de Lagrangiano Aumentado basados en funciones de penalidad no cuadráticas |
spellingShingle |
Métodos de Lagrangiano Aumentado basados en funciones de penalidad no cuadráticas Sanchez, María Daniela OPTIMIZACION NO LINEAL CONDICIONES DE OPTIMALIDAD LAGRANGIANO AUMENTADO PENALIDAD |
title_short |
Métodos de Lagrangiano Aumentado basados en funciones de penalidad no cuadráticas |
title_full |
Métodos de Lagrangiano Aumentado basados en funciones de penalidad no cuadráticas |
title_fullStr |
Métodos de Lagrangiano Aumentado basados en funciones de penalidad no cuadráticas |
title_full_unstemmed |
Métodos de Lagrangiano Aumentado basados en funciones de penalidad no cuadráticas |
title_sort |
Métodos de Lagrangiano Aumentado basados en funciones de penalidad no cuadráticas |
dc.creator.none.fl_str_mv |
Sanchez, María Daniela |
author |
Sanchez, María Daniela |
author_facet |
Sanchez, María Daniela |
author_role |
author |
dc.contributor.none.fl_str_mv |
Schuverdt, María Laura Etchebest, Nélida E. |
dc.subject.none.fl_str_mv |
OPTIMIZACION NO LINEAL CONDICIONES DE OPTIMALIDAD LAGRANGIANO AUMENTADO PENALIDAD |
topic |
OPTIMIZACION NO LINEAL CONDICIONES DE OPTIMALIDAD LAGRANGIANO AUMENTADO PENALIDAD |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
El proceso del método de Lagrangiano Aumentado genera una sucesión de iteraciones donde cada una de estas es la solución aproximada de un subproblema que involucra una función Lagrangiana Aumentada. El estudio de la convergencia global de este método depende fuertemente de la información utilizada para resolver el subproblema. Cuando se usa información de las primeras derivadas para resolver el subproblema, bajo condiciones de calidad apropiadas, se puede demostrar la convergencia a puntos que satisfacen las condiciones de Karush-Kuhn-Tucker (puntos KKT). Cuando se utiliza información tanto de las primeras como de las segundas derivadas, se demuestra la convergencia, bajo condiciones de calidad adecuadas, a puntos KKT que verifican además una condición de optimalidad de segundo orden. El estudio de condiciones de calidad y condiciones de calidad secuenciales han crecido de manera notoria en los últimos tiempos. La condición más débil que encontramos en la literatura, considerando el método de Lagrangiano Aumentado, involucra la función de penalidad cuadrática. El propósito de este trabajo es estudiar la convergencia global del algoritmo de Lagrangiano Aumentado que considera funciones de penalidad no cuadráticas. Analizamos la convergencia del algoritmo propuesto a puntos que satisfacen las condiciones KKT y, también, la condición de optimalidad necesaria de segundo orden débil. El esquema de generación de las funciones de penalidad Lagrangianas incluye, por ejemplo, la función de penalidad exponencial y la barrera logarítmica sin utilizar hipótesis de convexidad. Para la función de penalidad exponencial, la acotación del parámetro de penalidad es probada utilizando condiciones clásicas. Fil: Sanchez, María Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Autor; |
description |
El proceso del método de Lagrangiano Aumentado genera una sucesión de iteraciones donde cada una de estas es la solución aproximada de un subproblema que involucra una función Lagrangiana Aumentada. El estudio de la convergencia global de este método depende fuertemente de la información utilizada para resolver el subproblema. Cuando se usa información de las primeras derivadas para resolver el subproblema, bajo condiciones de calidad apropiadas, se puede demostrar la convergencia a puntos que satisfacen las condiciones de Karush-Kuhn-Tucker (puntos KKT). Cuando se utiliza información tanto de las primeras como de las segundas derivadas, se demuestra la convergencia, bajo condiciones de calidad adecuadas, a puntos KKT que verifican además una condición de optimalidad de segundo orden. El estudio de condiciones de calidad y condiciones de calidad secuenciales han crecido de manera notoria en los últimos tiempos. La condición más débil que encontramos en la literatura, considerando el método de Lagrangiano Aumentado, involucra la función de penalidad cuadrática. El propósito de este trabajo es estudiar la convergencia global del algoritmo de Lagrangiano Aumentado que considera funciones de penalidad no cuadráticas. Analizamos la convergencia del algoritmo propuesto a puntos que satisfacen las condiciones KKT y, también, la condición de optimalidad necesaria de segundo orden débil. El esquema de generación de las funciones de penalidad Lagrangianas incluye, por ejemplo, la función de penalidad exponencial y la barrera logarítmica sin utilizar hipótesis de convexidad. Para la función de penalidad exponencial, la acotación del parámetro de penalidad es probada utilizando condiciones clásicas. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-22 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/103919 Sanchez, María Daniela; Schuverdt, María Laura; Etchebest, Nélida E.; Métodos de Lagrangiano Aumentado basados en funciones de penalidad no cuadráticas; 22-12-2017 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/103919 |
identifier_str_mv |
Sanchez, María Daniela; Schuverdt, María Laura; Etchebest, Nélida E.; Métodos de Lagrangiano Aumentado basados en funciones de penalidad no cuadráticas; 22-12-2017 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://sedici.unlp.edu.ar/handle/10915/65191 info:eu-repo/semantics/altIdentifier/doi/10.35537/10915/65191 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613014042443776 |
score |
13.070432 |