Parallel GPU implementations of numerical methods for fluid dynamics
- Autores
- Ezzatti, Pablo; Nesmachnow, Sergio
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This article presents the application of parallel computing techniques using Graphic Processing Unit (GPU) in order to improve the computational efficiency of numerical methods applied to uid dynamics problems. In the last ten years, GPUs have emerged as a major paradigm for solving complex problems using parallel computing techniques. Fluid dynamics problems usually requires large execution times to perform simulations for realistic scenarios. In this work, two numerical models for fluid dynamics are presented, and parallel implementations on GPU for the Strongly Implicit Procedure and the Cyclic Reduction methods for solving linear systems are introduced. The experimental evaluation of the proposed methods demonstrates that a significant reduction on the computing times can be attained when solving linear systems with representative dimensions, and preliminary results show that the efficiency gains also propagate to the numerical models for fluid dynamics.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
GPU computing
linear system solvers
fluid dynamics models - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/152630
Ver los metadatos del registro completo
id |
SEDICI_fcf2a90a14b40470dd3ccd49d1472a95 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/152630 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Parallel GPU implementations of numerical methods for fluid dynamicsEzzatti, PabloNesmachnow, SergioCiencias InformáticasGPU computinglinear system solversfluid dynamics modelsThis article presents the application of parallel computing techniques using Graphic Processing Unit (GPU) in order to improve the computational efficiency of numerical methods applied to uid dynamics problems. In the last ten years, GPUs have emerged as a major paradigm for solving complex problems using parallel computing techniques. Fluid dynamics problems usually requires large execution times to perform simulations for realistic scenarios. In this work, two numerical models for fluid dynamics are presented, and parallel implementations on GPU for the Strongly Implicit Procedure and the Cyclic Reduction methods for solving linear systems are introduced. The experimental evaluation of the proposed methods demonstrates that a significant reduction on the computing times can be attained when solving linear systems with representative dimensions, and preliminary results show that the efficiency gains also propagate to the numerical models for fluid dynamics.Sociedad Argentina de Informática e Investigación Operativa2010info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf3181-3194http://sedici.unlp.edu.ar/handle/10915/152630enginfo:eu-repo/semantics/altIdentifier/url/http://39jaiio.sadio.org.ar/sites/default/files/39jaiio-hpc-01.pdfinfo:eu-repo/semantics/altIdentifier/issn/1851-9326info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:39:27Zoai:sedici.unlp.edu.ar:10915/152630Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:39:27.225SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Parallel GPU implementations of numerical methods for fluid dynamics |
title |
Parallel GPU implementations of numerical methods for fluid dynamics |
spellingShingle |
Parallel GPU implementations of numerical methods for fluid dynamics Ezzatti, Pablo Ciencias Informáticas GPU computing linear system solvers fluid dynamics models |
title_short |
Parallel GPU implementations of numerical methods for fluid dynamics |
title_full |
Parallel GPU implementations of numerical methods for fluid dynamics |
title_fullStr |
Parallel GPU implementations of numerical methods for fluid dynamics |
title_full_unstemmed |
Parallel GPU implementations of numerical methods for fluid dynamics |
title_sort |
Parallel GPU implementations of numerical methods for fluid dynamics |
dc.creator.none.fl_str_mv |
Ezzatti, Pablo Nesmachnow, Sergio |
author |
Ezzatti, Pablo |
author_facet |
Ezzatti, Pablo Nesmachnow, Sergio |
author_role |
author |
author2 |
Nesmachnow, Sergio |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas GPU computing linear system solvers fluid dynamics models |
topic |
Ciencias Informáticas GPU computing linear system solvers fluid dynamics models |
dc.description.none.fl_txt_mv |
This article presents the application of parallel computing techniques using Graphic Processing Unit (GPU) in order to improve the computational efficiency of numerical methods applied to uid dynamics problems. In the last ten years, GPUs have emerged as a major paradigm for solving complex problems using parallel computing techniques. Fluid dynamics problems usually requires large execution times to perform simulations for realistic scenarios. In this work, two numerical models for fluid dynamics are presented, and parallel implementations on GPU for the Strongly Implicit Procedure and the Cyclic Reduction methods for solving linear systems are introduced. The experimental evaluation of the proposed methods demonstrates that a significant reduction on the computing times can be attained when solving linear systems with representative dimensions, and preliminary results show that the efficiency gains also propagate to the numerical models for fluid dynamics. Sociedad Argentina de Informática e Investigación Operativa |
description |
This article presents the application of parallel computing techniques using Graphic Processing Unit (GPU) in order to improve the computational efficiency of numerical methods applied to uid dynamics problems. In the last ten years, GPUs have emerged as a major paradigm for solving complex problems using parallel computing techniques. Fluid dynamics problems usually requires large execution times to perform simulations for realistic scenarios. In this work, two numerical models for fluid dynamics are presented, and parallel implementations on GPU for the Strongly Implicit Procedure and the Cyclic Reduction methods for solving linear systems are introduced. The experimental evaluation of the proposed methods demonstrates that a significant reduction on the computing times can be attained when solving linear systems with representative dimensions, and preliminary results show that the efficiency gains also propagate to the numerical models for fluid dynamics. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/152630 |
url |
http://sedici.unlp.edu.ar/handle/10915/152630 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://39jaiio.sadio.org.ar/sites/default/files/39jaiio-hpc-01.pdf info:eu-repo/semantics/altIdentifier/issn/1851-9326 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 3181-3194 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616268220465152 |
score |
13.070432 |