Parallel GPU implementations of numerical methods for fluid dynamics

Autores
Ezzatti, Pablo; Nesmachnow, Sergio
Año de publicación
2010
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
This article presents the application of parallel computing techniques using Graphic Processing Unit (GPU) in order to improve the computational efficiency of numerical methods applied to uid dynamics problems. In the last ten years, GPUs have emerged as a major paradigm for solving complex problems using parallel computing techniques. Fluid dynamics problems usually requires large execution times to perform simulations for realistic scenarios. In this work, two numerical models for fluid dynamics are presented, and parallel implementations on GPU for the Strongly Implicit Procedure and the Cyclic Reduction methods for solving linear systems are introduced. The experimental evaluation of the proposed methods demonstrates that a significant reduction on the computing times can be attained when solving linear systems with representative dimensions, and preliminary results show that the efficiency gains also propagate to the numerical models for fluid dynamics.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
GPU computing
linear system solvers
fluid dynamics models
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/152630

id SEDICI_fcf2a90a14b40470dd3ccd49d1472a95
oai_identifier_str oai:sedici.unlp.edu.ar:10915/152630
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Parallel GPU implementations of numerical methods for fluid dynamicsEzzatti, PabloNesmachnow, SergioCiencias InformáticasGPU computinglinear system solversfluid dynamics modelsThis article presents the application of parallel computing techniques using Graphic Processing Unit (GPU) in order to improve the computational efficiency of numerical methods applied to uid dynamics problems. In the last ten years, GPUs have emerged as a major paradigm for solving complex problems using parallel computing techniques. Fluid dynamics problems usually requires large execution times to perform simulations for realistic scenarios. In this work, two numerical models for fluid dynamics are presented, and parallel implementations on GPU for the Strongly Implicit Procedure and the Cyclic Reduction methods for solving linear systems are introduced. The experimental evaluation of the proposed methods demonstrates that a significant reduction on the computing times can be attained when solving linear systems with representative dimensions, and preliminary results show that the efficiency gains also propagate to the numerical models for fluid dynamics.Sociedad Argentina de Informática e Investigación Operativa2010info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf3181-3194http://sedici.unlp.edu.ar/handle/10915/152630enginfo:eu-repo/semantics/altIdentifier/url/http://39jaiio.sadio.org.ar/sites/default/files/39jaiio-hpc-01.pdfinfo:eu-repo/semantics/altIdentifier/issn/1851-9326info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:39:27Zoai:sedici.unlp.edu.ar:10915/152630Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:39:27.225SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Parallel GPU implementations of numerical methods for fluid dynamics
title Parallel GPU implementations of numerical methods for fluid dynamics
spellingShingle Parallel GPU implementations of numerical methods for fluid dynamics
Ezzatti, Pablo
Ciencias Informáticas
GPU computing
linear system solvers
fluid dynamics models
title_short Parallel GPU implementations of numerical methods for fluid dynamics
title_full Parallel GPU implementations of numerical methods for fluid dynamics
title_fullStr Parallel GPU implementations of numerical methods for fluid dynamics
title_full_unstemmed Parallel GPU implementations of numerical methods for fluid dynamics
title_sort Parallel GPU implementations of numerical methods for fluid dynamics
dc.creator.none.fl_str_mv Ezzatti, Pablo
Nesmachnow, Sergio
author Ezzatti, Pablo
author_facet Ezzatti, Pablo
Nesmachnow, Sergio
author_role author
author2 Nesmachnow, Sergio
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
GPU computing
linear system solvers
fluid dynamics models
topic Ciencias Informáticas
GPU computing
linear system solvers
fluid dynamics models
dc.description.none.fl_txt_mv This article presents the application of parallel computing techniques using Graphic Processing Unit (GPU) in order to improve the computational efficiency of numerical methods applied to uid dynamics problems. In the last ten years, GPUs have emerged as a major paradigm for solving complex problems using parallel computing techniques. Fluid dynamics problems usually requires large execution times to perform simulations for realistic scenarios. In this work, two numerical models for fluid dynamics are presented, and parallel implementations on GPU for the Strongly Implicit Procedure and the Cyclic Reduction methods for solving linear systems are introduced. The experimental evaluation of the proposed methods demonstrates that a significant reduction on the computing times can be attained when solving linear systems with representative dimensions, and preliminary results show that the efficiency gains also propagate to the numerical models for fluid dynamics.
Sociedad Argentina de Informática e Investigación Operativa
description This article presents the application of parallel computing techniques using Graphic Processing Unit (GPU) in order to improve the computational efficiency of numerical methods applied to uid dynamics problems. In the last ten years, GPUs have emerged as a major paradigm for solving complex problems using parallel computing techniques. Fluid dynamics problems usually requires large execution times to perform simulations for realistic scenarios. In this work, two numerical models for fluid dynamics are presented, and parallel implementations on GPU for the Strongly Implicit Procedure and the Cyclic Reduction methods for solving linear systems are introduced. The experimental evaluation of the proposed methods demonstrates that a significant reduction on the computing times can be attained when solving linear systems with representative dimensions, and preliminary results show that the efficiency gains also propagate to the numerical models for fluid dynamics.
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/152630
url http://sedici.unlp.edu.ar/handle/10915/152630
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://39jaiio.sadio.org.ar/sites/default/files/39jaiio-hpc-01.pdf
info:eu-repo/semantics/altIdentifier/issn/1851-9326
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
3181-3194
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616268220465152
score 13.070432