FULL GPU Implementation of Lattice-Boltzmann Methods with Immersed Boundary Conditions for Fast Fluid Simulations

Autores
Boroni, Gustavo Adolfo; Dottori, Javier Alejandro; Rinaldi, Pablo Rafael
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Lattice Boltzmann Method (LBM) has shown great potential in fluid simulations, but performance issues and difficulties to manage complex boundary conditions have hindered a wider application. The upcoming of Graphic Processing Units (GPU) Computing offered a possible solution for the performance issue, and methods like the Immersed Boundary (IB) algorithm proved to be a flexible solution to boundaries. Unfortunately, the implicit IB algorithm makes the LBM implementation in GPU a non-trivial task. This work presents a fully parallel GPU implementation of LBM in combination with IB. The fluid-boundary interaction is implemented via GPU kernels, using execution configurations and data structures specifically designed to accelerate each code execution. Simulations were validated against experimental and analytical data showing good agreement and improving the computational time. Substantial reductions of calculation rates were achieved, lowering down the required time to execute the same model in a CPU to about two magnitude orders.
Fil: Boroni, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: Dottori, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: Rinaldi, Pablo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina
Materia
GPU
Lattice Boltzmann Methods
Immersed Boundary
Computational Fluid Dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/179020

id CONICETDig_a2310afd016d32c2479536c3d7d3ce4b
oai_identifier_str oai:ri.conicet.gov.ar:11336/179020
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling FULL GPU Implementation of Lattice-Boltzmann Methods with Immersed Boundary Conditions for Fast Fluid SimulationsBoroni, Gustavo AdolfoDottori, Javier AlejandroRinaldi, Pablo RafaelGPULattice Boltzmann MethodsImmersed BoundaryComputational Fluid Dynamicshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Lattice Boltzmann Method (LBM) has shown great potential in fluid simulations, but performance issues and difficulties to manage complex boundary conditions have hindered a wider application. The upcoming of Graphic Processing Units (GPU) Computing offered a possible solution for the performance issue, and methods like the Immersed Boundary (IB) algorithm proved to be a flexible solution to boundaries. Unfortunately, the implicit IB algorithm makes the LBM implementation in GPU a non-trivial task. This work presents a fully parallel GPU implementation of LBM in combination with IB. The fluid-boundary interaction is implemented via GPU kernels, using execution configurations and data structures specifically designed to accelerate each code execution. Simulations were validated against experimental and analytical data showing good agreement and improving the computational time. Substantial reductions of calculation rates were achieved, lowering down the required time to execute the same model in a CPU to about two magnitude orders.Fil: Boroni, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; ArgentinaFil: Dottori, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; ArgentinaFil: Rinaldi, Pablo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaInstitute of Multiphysics2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/179020Boroni, Gustavo Adolfo; Dottori, Javier Alejandro; Rinaldi, Pablo Rafael; FULL GPU Implementation of Lattice-Boltzmann Methods with Immersed Boundary Conditions for Fast Fluid Simulations; Institute of Multiphysics; International Journal of Multiphysics; 11; 1; 3-2017; 1-142048-3961CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.journal.multiphysics.org/index.php/IJM/article/view/11-1-1info:eu-repo/semantics/altIdentifier/doi/10.21152/1750-9548.11.1.1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:27Zoai:ri.conicet.gov.ar:11336/179020instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:27.784CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv FULL GPU Implementation of Lattice-Boltzmann Methods with Immersed Boundary Conditions for Fast Fluid Simulations
title FULL GPU Implementation of Lattice-Boltzmann Methods with Immersed Boundary Conditions for Fast Fluid Simulations
spellingShingle FULL GPU Implementation of Lattice-Boltzmann Methods with Immersed Boundary Conditions for Fast Fluid Simulations
Boroni, Gustavo Adolfo
GPU
Lattice Boltzmann Methods
Immersed Boundary
Computational Fluid Dynamics
title_short FULL GPU Implementation of Lattice-Boltzmann Methods with Immersed Boundary Conditions for Fast Fluid Simulations
title_full FULL GPU Implementation of Lattice-Boltzmann Methods with Immersed Boundary Conditions for Fast Fluid Simulations
title_fullStr FULL GPU Implementation of Lattice-Boltzmann Methods with Immersed Boundary Conditions for Fast Fluid Simulations
title_full_unstemmed FULL GPU Implementation of Lattice-Boltzmann Methods with Immersed Boundary Conditions for Fast Fluid Simulations
title_sort FULL GPU Implementation of Lattice-Boltzmann Methods with Immersed Boundary Conditions for Fast Fluid Simulations
dc.creator.none.fl_str_mv Boroni, Gustavo Adolfo
Dottori, Javier Alejandro
Rinaldi, Pablo Rafael
author Boroni, Gustavo Adolfo
author_facet Boroni, Gustavo Adolfo
Dottori, Javier Alejandro
Rinaldi, Pablo Rafael
author_role author
author2 Dottori, Javier Alejandro
Rinaldi, Pablo Rafael
author2_role author
author
dc.subject.none.fl_str_mv GPU
Lattice Boltzmann Methods
Immersed Boundary
Computational Fluid Dynamics
topic GPU
Lattice Boltzmann Methods
Immersed Boundary
Computational Fluid Dynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Lattice Boltzmann Method (LBM) has shown great potential in fluid simulations, but performance issues and difficulties to manage complex boundary conditions have hindered a wider application. The upcoming of Graphic Processing Units (GPU) Computing offered a possible solution for the performance issue, and methods like the Immersed Boundary (IB) algorithm proved to be a flexible solution to boundaries. Unfortunately, the implicit IB algorithm makes the LBM implementation in GPU a non-trivial task. This work presents a fully parallel GPU implementation of LBM in combination with IB. The fluid-boundary interaction is implemented via GPU kernels, using execution configurations and data structures specifically designed to accelerate each code execution. Simulations were validated against experimental and analytical data showing good agreement and improving the computational time. Substantial reductions of calculation rates were achieved, lowering down the required time to execute the same model in a CPU to about two magnitude orders.
Fil: Boroni, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: Dottori, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: Rinaldi, Pablo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina
description Lattice Boltzmann Method (LBM) has shown great potential in fluid simulations, but performance issues and difficulties to manage complex boundary conditions have hindered a wider application. The upcoming of Graphic Processing Units (GPU) Computing offered a possible solution for the performance issue, and methods like the Immersed Boundary (IB) algorithm proved to be a flexible solution to boundaries. Unfortunately, the implicit IB algorithm makes the LBM implementation in GPU a non-trivial task. This work presents a fully parallel GPU implementation of LBM in combination with IB. The fluid-boundary interaction is implemented via GPU kernels, using execution configurations and data structures specifically designed to accelerate each code execution. Simulations were validated against experimental and analytical data showing good agreement and improving the computational time. Substantial reductions of calculation rates were achieved, lowering down the required time to execute the same model in a CPU to about two magnitude orders.
publishDate 2017
dc.date.none.fl_str_mv 2017-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/179020
Boroni, Gustavo Adolfo; Dottori, Javier Alejandro; Rinaldi, Pablo Rafael; FULL GPU Implementation of Lattice-Boltzmann Methods with Immersed Boundary Conditions for Fast Fluid Simulations; Institute of Multiphysics; International Journal of Multiphysics; 11; 1; 3-2017; 1-14
2048-3961
CONICET Digital
CONICET
url http://hdl.handle.net/11336/179020
identifier_str_mv Boroni, Gustavo Adolfo; Dottori, Javier Alejandro; Rinaldi, Pablo Rafael; FULL GPU Implementation of Lattice-Boltzmann Methods with Immersed Boundary Conditions for Fast Fluid Simulations; Institute of Multiphysics; International Journal of Multiphysics; 11; 1; 3-2017; 1-14
2048-3961
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.journal.multiphysics.org/index.php/IJM/article/view/11-1-1
info:eu-repo/semantics/altIdentifier/doi/10.21152/1750-9548.11.1.1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Multiphysics
publisher.none.fl_str_mv Institute of Multiphysics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270120171274240
score 13.13397