Parallel implementation of a cellular automata in a hybrid CPU/GPU environment
- Autores
- Millán, Emmanuel N.; Martínez, Paula; Gil Costa, Graciela Verónica; Piccoli, María Fabiana; Printista, Alicia Marcela; Bederian, Carlos; García Garino, Carlos; Bringa, Eduardo M.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Cellular Automata (CA) simulations can be used to model multiple systems, in fields like biology, physics and mathematics. In this work, a possible framework to execute a popular CA in hybrid CPU and GPUs (Graphics Processing Units) environments is presented. The inherently parallel nature of CA and the parallelism offered by GPUs makes their combination attractive. Benchmarks are conducted in several hardware scenarios. The use of MPI /OMP is explored for CPUs, together with the use of MPI in GPU clusters. Speed-ups up to 20 x are found when comparing GPU implementations to the serial CPU version of the code.
WPDP- XIII Workshop procesamiento distribuido y paralelo
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
general purpose GPU
cellular automata
multi-GPU - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/31730
Ver los metadatos del registro completo
| id |
SEDICI_20f8fdc57ac305aaae954e392e28e875 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/31730 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Parallel implementation of a cellular automata in a hybrid CPU/GPU environmentMillán, Emmanuel N.Martínez, PaulaGil Costa, Graciela VerónicaPiccoli, María FabianaPrintista, Alicia MarcelaBederian, CarlosGarcía Garino, CarlosBringa, Eduardo M.Ciencias Informáticasgeneral purpose GPUcellular automatamulti-GPUCellular Automata (CA) simulations can be used to model multiple systems, in fields like biology, physics and mathematics. In this work, a possible framework to execute a popular CA in hybrid CPU and GPUs (Graphics Processing Units) environments is presented. The inherently parallel nature of CA and the parallelism offered by GPUs makes their combination attractive. Benchmarks are conducted in several hardware scenarios. The use of MPI /OMP is explored for CPUs, together with the use of MPI in GPU clusters. Speed-ups up to 20 x are found when comparing GPU implementations to the serial CPU version of the code.WPDP- XIII Workshop procesamiento distribuido y paraleloRed de Universidades con Carreras en Informática (RedUNCI)2013-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/31730enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-12T10:22:54Zoai:sedici.unlp.edu.ar:10915/31730Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-12 10:22:54.902SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Parallel implementation of a cellular automata in a hybrid CPU/GPU environment |
| title |
Parallel implementation of a cellular automata in a hybrid CPU/GPU environment |
| spellingShingle |
Parallel implementation of a cellular automata in a hybrid CPU/GPU environment Millán, Emmanuel N. Ciencias Informáticas general purpose GPU cellular automata multi-GPU |
| title_short |
Parallel implementation of a cellular automata in a hybrid CPU/GPU environment |
| title_full |
Parallel implementation of a cellular automata in a hybrid CPU/GPU environment |
| title_fullStr |
Parallel implementation of a cellular automata in a hybrid CPU/GPU environment |
| title_full_unstemmed |
Parallel implementation of a cellular automata in a hybrid CPU/GPU environment |
| title_sort |
Parallel implementation of a cellular automata in a hybrid CPU/GPU environment |
| dc.creator.none.fl_str_mv |
Millán, Emmanuel N. Martínez, Paula Gil Costa, Graciela Verónica Piccoli, María Fabiana Printista, Alicia Marcela Bederian, Carlos García Garino, Carlos Bringa, Eduardo M. |
| author |
Millán, Emmanuel N. |
| author_facet |
Millán, Emmanuel N. Martínez, Paula Gil Costa, Graciela Verónica Piccoli, María Fabiana Printista, Alicia Marcela Bederian, Carlos García Garino, Carlos Bringa, Eduardo M. |
| author_role |
author |
| author2 |
Martínez, Paula Gil Costa, Graciela Verónica Piccoli, María Fabiana Printista, Alicia Marcela Bederian, Carlos García Garino, Carlos Bringa, Eduardo M. |
| author2_role |
author author author author author author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas general purpose GPU cellular automata multi-GPU |
| topic |
Ciencias Informáticas general purpose GPU cellular automata multi-GPU |
| dc.description.none.fl_txt_mv |
Cellular Automata (CA) simulations can be used to model multiple systems, in fields like biology, physics and mathematics. In this work, a possible framework to execute a popular CA in hybrid CPU and GPUs (Graphics Processing Units) environments is presented. The inherently parallel nature of CA and the parallelism offered by GPUs makes their combination attractive. Benchmarks are conducted in several hardware scenarios. The use of MPI /OMP is explored for CPUs, together with the use of MPI in GPU clusters. Speed-ups up to 20 x are found when comparing GPU implementations to the serial CPU version of the code. WPDP- XIII Workshop procesamiento distribuido y paralelo Red de Universidades con Carreras en Informática (RedUNCI) |
| description |
Cellular Automata (CA) simulations can be used to model multiple systems, in fields like biology, physics and mathematics. In this work, a possible framework to execute a popular CA in hybrid CPU and GPUs (Graphics Processing Units) environments is presented. The inherently parallel nature of CA and the parallelism offered by GPUs makes their combination attractive. Benchmarks are conducted in several hardware scenarios. The use of MPI /OMP is explored for CPUs, together with the use of MPI in GPU clusters. Speed-ups up to 20 x are found when comparing GPU implementations to the serial CPU version of the code. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/31730 |
| url |
http://sedici.unlp.edu.ar/handle/10915/31730 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1848605294707343360 |
| score |
12.976206 |