Content based image retrieval through object features
- Autores
- Meenakshi , R.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- reseña artículo
- Estado
- versión publicada
- Descripción
- Digital images are an increasingly important class of data, especially as computers become more usable with greater memory and communication capacities. As the demand for digital images increases, the need to store and retrieve images in an intuitive and efficient manner arises. These approaches can roughly be classified into three categories such as text-based, content-based and semantic based. ARC-BC or convexity measures. The aim of this thesis to show that the rate of retrieval can be improved by combining various features than using a single characteristic. The proposed method combines colour, texture and geometric features to form a multidimension feature vector. (Párrafo extraído del texto a modo de resumen)
Facultad de Informática - Materia
-
Ciencias Informáticas
imagen digital
Almacenamiento y Recuperación de la Información - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/41814
Ver los metadatos del registro completo
| id |
SEDICI_fcf29decc2b1bcd981362c6e980670cf |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/41814 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Content based image retrieval through object featuresMeenakshi , R.Ciencias Informáticasimagen digitalAlmacenamiento y Recuperación de la InformaciónDigital images are an increasingly important class of data, especially as computers become more usable with greater memory and communication capacities. As the demand for digital images increases, the need to store and retrieve images in an intuitive and efficient manner arises. These approaches can roughly be classified into three categories such as text-based, content-based and semantic based. ARC-BC or convexity measures. The aim of this thesis to show that the rate of retrieval can be improved by combining various features than using a single characteristic. The proposed method combines colour, texture and geometric features to form a multidimension feature vector. <i>(Párrafo extraído del texto a modo de resumen)</i>Facultad de Informática2014-10info:eu-repo/semantics/reviewinfo:eu-repo/semantics/publishedVersionRevisionhttp://purl.org/coar/resource_type/c_dcae04bcinfo:ar-repo/semantics/resenaArticuloapplication/pdf109-110http://sedici.unlp.edu.ar/handle/10915/41814enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct14-TO1.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:42:42Zoai:sedici.unlp.edu.ar:10915/41814Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:42:42.365SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Content based image retrieval through object features |
| title |
Content based image retrieval through object features |
| spellingShingle |
Content based image retrieval through object features Meenakshi , R. Ciencias Informáticas imagen digital Almacenamiento y Recuperación de la Información |
| title_short |
Content based image retrieval through object features |
| title_full |
Content based image retrieval through object features |
| title_fullStr |
Content based image retrieval through object features |
| title_full_unstemmed |
Content based image retrieval through object features |
| title_sort |
Content based image retrieval through object features |
| dc.creator.none.fl_str_mv |
Meenakshi , R. |
| author |
Meenakshi , R. |
| author_facet |
Meenakshi , R. |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas imagen digital Almacenamiento y Recuperación de la Información |
| topic |
Ciencias Informáticas imagen digital Almacenamiento y Recuperación de la Información |
| dc.description.none.fl_txt_mv |
Digital images are an increasingly important class of data, especially as computers become more usable with greater memory and communication capacities. As the demand for digital images increases, the need to store and retrieve images in an intuitive and efficient manner arises. These approaches can roughly be classified into three categories such as text-based, content-based and semantic based. ARC-BC or convexity measures. The aim of this thesis to show that the rate of retrieval can be improved by combining various features than using a single characteristic. The proposed method combines colour, texture and geometric features to form a multidimension feature vector. <i>(Párrafo extraído del texto a modo de resumen)</i> Facultad de Informática |
| description |
Digital images are an increasingly important class of data, especially as computers become more usable with greater memory and communication capacities. As the demand for digital images increases, the need to store and retrieve images in an intuitive and efficient manner arises. These approaches can roughly be classified into three categories such as text-based, content-based and semantic based. ARC-BC or convexity measures. The aim of this thesis to show that the rate of retrieval can be improved by combining various features than using a single characteristic. The proposed method combines colour, texture and geometric features to form a multidimension feature vector. <i>(Párrafo extraído del texto a modo de resumen)</i> |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/review info:eu-repo/semantics/publishedVersion Revision http://purl.org/coar/resource_type/c_dcae04bc info:ar-repo/semantics/resenaArticulo |
| format |
review |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/41814 |
| url |
http://sedici.unlp.edu.ar/handle/10915/41814 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct14-TO1.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
| dc.format.none.fl_str_mv |
application/pdf 109-110 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846782922084843520 |
| score |
12.982451 |