Efficiency Analysis in Content Based Image Retrieval Using RDF Annotations
- Autores
- Alvez, Carlos; Vecchietti, Aldo
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nowadays it is common to combine low-level and semantic data for image retrieval. The images are stored in databases and computer graphics algorithms are employed to get the pictures. Most of the works consider both aspects separately. In this work, using the capabilities of a commercial ORDBMS a reference architecture was implemented for recovering images, and then a performance analysis is realized using several index types to search some specific semantic data stored in the database via RDF triples. The experiments analyzed the mean recovery time of triples in tables having a hundred of thousands to millions of triples. The performance obtained using Bitmap, B-Tree and Hash Partitioned indexes are analyzed. The results obtained with the experiences performed are implemented in the reference architecture in order to speed up the pattern search.
Fil: Alvez, Carlos. Universidad Nacional de Entre Ríos; Argentina
Fil: Vecchietti, Aldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
Image Retrieval
Semantic Data
Rdf Triples
Object Relational Databases - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/70259
Ver los metadatos del registro completo
id |
CONICETDig_4e4361200fb0ccf7b709bb71c6796902 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/70259 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Efficiency Analysis in Content Based Image Retrieval Using RDF AnnotationsAlvez, CarlosVecchietti, AldoImage RetrievalSemantic DataRdf TriplesObject Relational Databaseshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Nowadays it is common to combine low-level and semantic data for image retrieval. The images are stored in databases and computer graphics algorithms are employed to get the pictures. Most of the works consider both aspects separately. In this work, using the capabilities of a commercial ORDBMS a reference architecture was implemented for recovering images, and then a performance analysis is realized using several index types to search some specific semantic data stored in the database via RDF triples. The experiments analyzed the mean recovery time of triples in tables having a hundred of thousands to millions of triples. The performance obtained using Bitmap, B-Tree and Hash Partitioned indexes are analyzed. The results obtained with the experiences performed are implemented in the reference architecture in order to speed up the pattern search.Fil: Alvez, Carlos. Universidad Nacional de Entre Ríos; ArgentinaFil: Vecchietti, Aldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaSpringer Verlag2011-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/mswordapplication/pdfhttp://hdl.handle.net/11336/70259Alvez, Carlos; Vecchietti, Aldo; Efficiency Analysis in Content Based Image Retrieval Using RDF Annotations; Springer Verlag; Lecture Notes in Computer Science; 7095; 12-2011; 285-2960302-9743CONICET DigitalCONICETenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:09:37Zoai:ri.conicet.gov.ar:11336/70259instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:09:37.989CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Efficiency Analysis in Content Based Image Retrieval Using RDF Annotations |
title |
Efficiency Analysis in Content Based Image Retrieval Using RDF Annotations |
spellingShingle |
Efficiency Analysis in Content Based Image Retrieval Using RDF Annotations Alvez, Carlos Image Retrieval Semantic Data Rdf Triples Object Relational Databases |
title_short |
Efficiency Analysis in Content Based Image Retrieval Using RDF Annotations |
title_full |
Efficiency Analysis in Content Based Image Retrieval Using RDF Annotations |
title_fullStr |
Efficiency Analysis in Content Based Image Retrieval Using RDF Annotations |
title_full_unstemmed |
Efficiency Analysis in Content Based Image Retrieval Using RDF Annotations |
title_sort |
Efficiency Analysis in Content Based Image Retrieval Using RDF Annotations |
dc.creator.none.fl_str_mv |
Alvez, Carlos Vecchietti, Aldo |
author |
Alvez, Carlos |
author_facet |
Alvez, Carlos Vecchietti, Aldo |
author_role |
author |
author2 |
Vecchietti, Aldo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Image Retrieval Semantic Data Rdf Triples Object Relational Databases |
topic |
Image Retrieval Semantic Data Rdf Triples Object Relational Databases |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Nowadays it is common to combine low-level and semantic data for image retrieval. The images are stored in databases and computer graphics algorithms are employed to get the pictures. Most of the works consider both aspects separately. In this work, using the capabilities of a commercial ORDBMS a reference architecture was implemented for recovering images, and then a performance analysis is realized using several index types to search some specific semantic data stored in the database via RDF triples. The experiments analyzed the mean recovery time of triples in tables having a hundred of thousands to millions of triples. The performance obtained using Bitmap, B-Tree and Hash Partitioned indexes are analyzed. The results obtained with the experiences performed are implemented in the reference architecture in order to speed up the pattern search. Fil: Alvez, Carlos. Universidad Nacional de Entre Ríos; Argentina Fil: Vecchietti, Aldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
Nowadays it is common to combine low-level and semantic data for image retrieval. The images are stored in databases and computer graphics algorithms are employed to get the pictures. Most of the works consider both aspects separately. In this work, using the capabilities of a commercial ORDBMS a reference architecture was implemented for recovering images, and then a performance analysis is realized using several index types to search some specific semantic data stored in the database via RDF triples. The experiments analyzed the mean recovery time of triples in tables having a hundred of thousands to millions of triples. The performance obtained using Bitmap, B-Tree and Hash Partitioned indexes are analyzed. The results obtained with the experiences performed are implemented in the reference architecture in order to speed up the pattern search. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/70259 Alvez, Carlos; Vecchietti, Aldo; Efficiency Analysis in Content Based Image Retrieval Using RDF Annotations; Springer Verlag; Lecture Notes in Computer Science; 7095; 12-2011; 285-296 0302-9743 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/70259 |
identifier_str_mv |
Alvez, Carlos; Vecchietti, Aldo; Efficiency Analysis in Content Based Image Retrieval Using RDF Annotations; Springer Verlag; Lecture Notes in Computer Science; 7095; 12-2011; 285-296 0302-9743 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/msword application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083244057952256 |
score |
13.22299 |