E-Mail Processing with Fuzzy SOMs and Association Rules
- Autores
- Lanzarini, Laura Cristina; Villa Monte, Augusto; Estrebou, César Armando
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- E-mail texts are hard to process due to their short length. In this article, the use of a diffuse neural network that is capable of identifying the most relevant terms in a set of e-mails is proposed. The associations between these terms will be measured through association rules built with the terms identified by the network. The metrics support, confidence and interest of the rules will be used to qualify the corresponding terms. The method proposed has been used to process e-mails of the PACENI Project (Support Project for Improving First-Year Teaching in Courses of Studies in Exact and Natural Sciences, Economic Science and Computer Science). With this type of analysis, the most common topics of student questions have been identified. Even though this new information can have various applications, they all involve, as a first instance, an improvement in student service.
Facultad de Informática - Materia
-
Ciencias Informáticas
Almacenamiento y Recuperación de la Información
Procesamiento Automatizado de Datos
Internet - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/9693
Ver los metadatos del registro completo
| id |
SEDICI_fbabc4cdd58fb52f71950e414020ac6b |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/9693 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
E-Mail Processing with Fuzzy SOMs and Association RulesLanzarini, Laura CristinaVilla Monte, AugustoEstrebou, César ArmandoCiencias InformáticasAlmacenamiento y Recuperación de la InformaciónProcesamiento Automatizado de DatosInternetE-mail texts are hard to process due to their short length. In this article, the use of a diffuse neural network that is capable of identifying the most relevant terms in a set of e-mails is proposed. The associations between these terms will be measured through association rules built with the terms identified by the network. The metrics support, confidence and interest of the rules will be used to qualify the corresponding terms. The method proposed has been used to process e-mails of the PACENI Project (Support Project for Improving First-Year Teaching in Courses of Studies in Exact and Natural Sciences, Economic Science and Computer Science). With this type of analysis, the most common topics of student questions have been identified. Even though this new information can have various applications, they all involve, as a first instance, an improvement in student service.Facultad de Informática2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf41-46http://sedici.unlp.edu.ar/handle/10915/9693enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr11-7.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:32:22Zoai:sedici.unlp.edu.ar:10915/9693Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:32:22.469SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
E-Mail Processing with Fuzzy SOMs and Association Rules |
| title |
E-Mail Processing with Fuzzy SOMs and Association Rules |
| spellingShingle |
E-Mail Processing with Fuzzy SOMs and Association Rules Lanzarini, Laura Cristina Ciencias Informáticas Almacenamiento y Recuperación de la Información Procesamiento Automatizado de Datos Internet |
| title_short |
E-Mail Processing with Fuzzy SOMs and Association Rules |
| title_full |
E-Mail Processing with Fuzzy SOMs and Association Rules |
| title_fullStr |
E-Mail Processing with Fuzzy SOMs and Association Rules |
| title_full_unstemmed |
E-Mail Processing with Fuzzy SOMs and Association Rules |
| title_sort |
E-Mail Processing with Fuzzy SOMs and Association Rules |
| dc.creator.none.fl_str_mv |
Lanzarini, Laura Cristina Villa Monte, Augusto Estrebou, César Armando |
| author |
Lanzarini, Laura Cristina |
| author_facet |
Lanzarini, Laura Cristina Villa Monte, Augusto Estrebou, César Armando |
| author_role |
author |
| author2 |
Villa Monte, Augusto Estrebou, César Armando |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Almacenamiento y Recuperación de la Información Procesamiento Automatizado de Datos Internet |
| topic |
Ciencias Informáticas Almacenamiento y Recuperación de la Información Procesamiento Automatizado de Datos Internet |
| dc.description.none.fl_txt_mv |
E-mail texts are hard to process due to their short length. In this article, the use of a diffuse neural network that is capable of identifying the most relevant terms in a set of e-mails is proposed. The associations between these terms will be measured through association rules built with the terms identified by the network. The metrics support, confidence and interest of the rules will be used to qualify the corresponding terms. The method proposed has been used to process e-mails of the PACENI Project (Support Project for Improving First-Year Teaching in Courses of Studies in Exact and Natural Sciences, Economic Science and Computer Science). With this type of analysis, the most common topics of student questions have been identified. Even though this new information can have various applications, they all involve, as a first instance, an improvement in student service. Facultad de Informática |
| description |
E-mail texts are hard to process due to their short length. In this article, the use of a diffuse neural network that is capable of identifying the most relevant terms in a set of e-mails is proposed. The associations between these terms will be measured through association rules built with the terms identified by the network. The metrics support, confidence and interest of the rules will be used to qualify the corresponding terms. The method proposed has been used to process e-mails of the PACENI Project (Support Project for Improving First-Year Teaching in Courses of Studies in Exact and Natural Sciences, Economic Science and Computer Science). With this type of analysis, the most common topics of student questions have been identified. Even though this new information can have various applications, they all involve, as a first instance, an improvement in student service. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/9693 |
| url |
http://sedici.unlp.edu.ar/handle/10915/9693 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr11-7.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
| dc.format.none.fl_str_mv |
application/pdf 41-46 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846782743624548352 |
| score |
12.982451 |